mirror of
https://gitee.com/milvus-io/milvus.git
synced 2026-01-07 19:31:51 +08:00
276 lines
10 KiB
C++
276 lines
10 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <iostream>
|
|
#include <thread>
|
|
|
|
#include <faiss/gpu/GpuIndexIVFFlat.h>
|
|
|
|
#include "knowhere/common/Exception.h"
|
|
#include "knowhere/common/Timer.h"
|
|
#include "knowhere/index/vector_index/IndexGPUIVF.h"
|
|
#include "knowhere/index/vector_index/IndexIVF.h"
|
|
#include "knowhere/index/vector_index/helpers/Cloner.h"
|
|
|
|
#include "unittest/Helper.h"
|
|
#include "unittest/utils.h"
|
|
|
|
using ::testing::Combine;
|
|
using ::testing::TestWithParam;
|
|
using ::testing::Values;
|
|
|
|
class IVFTest : public DataGen, public TestWithParam<::std::tuple<std::string, ParameterType>> {
|
|
protected:
|
|
void
|
|
SetUp() override {
|
|
knowhere::FaissGpuResourceMgr::GetInstance().InitDevice(DEVICEID, PINMEM, TEMPMEM, RESNUM);
|
|
|
|
ParameterType parameter_type;
|
|
std::tie(index_type, parameter_type) = GetParam();
|
|
// Init_with_default();
|
|
// nb = 1000000;
|
|
// nq = 1000;
|
|
// k = 1000;
|
|
Generate(DIM, NB, NQ);
|
|
index_ = IndexFactory(index_type);
|
|
conf = ParamGenerator::GetInstance().Gen(parameter_type);
|
|
}
|
|
|
|
void
|
|
TearDown() override {
|
|
knowhere::FaissGpuResourceMgr::GetInstance().Free();
|
|
}
|
|
|
|
protected:
|
|
std::string index_type;
|
|
knowhere::Config conf;
|
|
knowhere::IVFIndexPtr index_ = nullptr;
|
|
};
|
|
|
|
INSTANTIATE_TEST_CASE_P(IVFParameters, IVFTest,
|
|
Values(std::make_tuple("IVF", ParameterType::ivf),
|
|
std::make_tuple("GPUIVF", ParameterType::ivf),
|
|
std::make_tuple("IVFPQ", ParameterType::ivfpq),
|
|
std::make_tuple("GPUIVFPQ", ParameterType::ivfpq),
|
|
std::make_tuple("IVFSQ", ParameterType::ivfsq),
|
|
#ifdef CUSTOMIZATION
|
|
std::make_tuple("IVFSQHybrid", ParameterType::ivfsq),
|
|
#endif
|
|
std::make_tuple("GPUIVFSQ", ParameterType::ivfsq)));
|
|
|
|
TEST_P(IVFTest, ivf_basic) {
|
|
assert(!xb.empty());
|
|
|
|
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
|
|
index_->set_preprocessor(preprocessor);
|
|
|
|
auto model = index_->Train(base_dataset, conf);
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, conf);
|
|
EXPECT_EQ(index_->Count(), nb);
|
|
EXPECT_EQ(index_->Dimension(), dim);
|
|
|
|
auto result = index_->Search(query_dataset, conf);
|
|
AssertAnns(result, nq, conf->k);
|
|
// PrintResult(result, nq, k);
|
|
}
|
|
|
|
TEST_P(IVFTest, ivf_serialize) {
|
|
auto serialize = [](const std::string& filename, knowhere::BinaryPtr& bin, uint8_t* ret) {
|
|
FileIOWriter writer(filename);
|
|
writer(static_cast<void*>(bin->data.get()), bin->size);
|
|
|
|
FileIOReader reader(filename);
|
|
reader(ret, bin->size);
|
|
};
|
|
|
|
{
|
|
// serialize index-model
|
|
auto model = index_->Train(base_dataset, conf);
|
|
auto binaryset = model->Serialize();
|
|
auto bin = binaryset.GetByName("IVF");
|
|
|
|
std::string filename = "/tmp/ivf_test_model_serialize.bin";
|
|
auto load_data = new uint8_t[bin->size];
|
|
serialize(filename, bin, load_data);
|
|
|
|
binaryset.clear();
|
|
auto data = std::make_shared<uint8_t>();
|
|
data.reset(load_data);
|
|
binaryset.Append("IVF", data, bin->size);
|
|
|
|
model->Load(binaryset);
|
|
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, conf);
|
|
auto result = index_->Search(query_dataset, conf);
|
|
AssertAnns(result, nq, conf->k);
|
|
}
|
|
|
|
{
|
|
// serialize index
|
|
auto model = index_->Train(base_dataset, conf);
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, conf);
|
|
auto binaryset = index_->Serialize();
|
|
auto bin = binaryset.GetByName("IVF");
|
|
|
|
std::string filename = "/tmp/ivf_test_serialize.bin";
|
|
auto load_data = new uint8_t[bin->size];
|
|
serialize(filename, bin, load_data);
|
|
|
|
binaryset.clear();
|
|
auto data = std::make_shared<uint8_t>();
|
|
data.reset(load_data);
|
|
binaryset.Append("IVF", data, bin->size);
|
|
|
|
index_->Load(binaryset);
|
|
EXPECT_EQ(index_->Count(), nb);
|
|
EXPECT_EQ(index_->Dimension(), dim);
|
|
auto result = index_->Search(query_dataset, conf);
|
|
AssertAnns(result, nq, conf->k);
|
|
}
|
|
}
|
|
|
|
TEST_P(IVFTest, clone_test) {
|
|
assert(!xb.empty());
|
|
|
|
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
|
|
index_->set_preprocessor(preprocessor);
|
|
|
|
auto model = index_->Train(base_dataset, conf);
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, conf);
|
|
EXPECT_EQ(index_->Count(), nb);
|
|
EXPECT_EQ(index_->Dimension(), dim);
|
|
auto result = index_->Search(query_dataset, conf);
|
|
AssertAnns(result, nq, conf->k);
|
|
// PrintResult(result, nq, k);
|
|
|
|
auto AssertEqual = [&](knowhere::DatasetPtr p1, knowhere::DatasetPtr p2) {
|
|
auto ids_p1 = p1->array()[0];
|
|
auto ids_p2 = p2->array()[0];
|
|
|
|
for (int i = 0; i < nq * k; ++i) {
|
|
EXPECT_EQ(*(ids_p2->data()->GetValues<int64_t>(1, i)), *(ids_p1->data()->GetValues<int64_t>(1, i)));
|
|
}
|
|
};
|
|
|
|
// {
|
|
// // clone in place
|
|
// std::vector<std::string> support_idx_vec{"IVF", "GPUIVF", "IVFPQ", "IVFSQ", "GPUIVFSQ"};
|
|
// auto finder = std::find(support_idx_vec.cbegin(), support_idx_vec.cend(), index_type);
|
|
// if (finder != support_idx_vec.cend()) {
|
|
// EXPECT_NO_THROW({
|
|
// auto clone_index = index_->Clone();
|
|
// auto clone_result = clone_index->Search(query_dataset, conf);
|
|
// //AssertAnns(result, nq, conf->k);
|
|
// AssertEqual(result, clone_result);
|
|
// std::cout << "inplace clone [" << index_type << "] success" << std::endl;
|
|
// });
|
|
// } else {
|
|
// EXPECT_THROW({
|
|
// std::cout << "inplace clone [" << index_type << "] failed" << std::endl;
|
|
// auto clone_index = index_->Clone();
|
|
// }, KnowhereException);
|
|
// }
|
|
// }
|
|
|
|
{
|
|
// copy from gpu to cpu
|
|
std::vector<std::string> support_idx_vec{"GPUIVF", "GPUIVFSQ", "IVFSQHybrid"};
|
|
auto finder = std::find(support_idx_vec.cbegin(), support_idx_vec.cend(), index_type);
|
|
if (finder != support_idx_vec.cend()) {
|
|
EXPECT_NO_THROW({
|
|
auto clone_index = knowhere::cloner::CopyGpuToCpu(index_, knowhere::Config());
|
|
auto clone_result = clone_index->Search(query_dataset, conf);
|
|
AssertEqual(result, clone_result);
|
|
std::cout << "clone G <=> C [" << index_type << "] success" << std::endl;
|
|
});
|
|
} else {
|
|
EXPECT_THROW(
|
|
{
|
|
std::cout << "clone G <=> C [" << index_type << "] failed" << std::endl;
|
|
auto clone_index = knowhere::cloner::CopyGpuToCpu(index_, knowhere::Config());
|
|
},
|
|
knowhere::KnowhereException);
|
|
}
|
|
}
|
|
|
|
if (index_type == "IVFSQHybrid") {
|
|
return;
|
|
}
|
|
|
|
{
|
|
// copy to gpu
|
|
std::vector<std::string> support_idx_vec{"IVF", "GPUIVF", "IVFSQ", "GPUIVFSQ"};
|
|
auto finder = std::find(support_idx_vec.cbegin(), support_idx_vec.cend(), index_type);
|
|
if (finder != support_idx_vec.cend()) {
|
|
EXPECT_NO_THROW({
|
|
auto clone_index = knowhere::cloner::CopyCpuToGpu(index_, DEVICEID, knowhere::Config());
|
|
auto clone_result = clone_index->Search(query_dataset, conf);
|
|
AssertEqual(result, clone_result);
|
|
std::cout << "clone C <=> G [" << index_type << "] success" << std::endl;
|
|
});
|
|
} else {
|
|
EXPECT_THROW(
|
|
{
|
|
std::cout << "clone C <=> G [" << index_type << "] failed" << std::endl;
|
|
auto clone_index = knowhere::cloner::CopyCpuToGpu(index_, DEVICEID, knowhere::Config());
|
|
},
|
|
knowhere::KnowhereException);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CUSTOMIZATION
|
|
TEST_P(IVFTest, gpu_seal_test) {
|
|
std::vector<std::string> support_idx_vec{"GPUIVF", "GPUIVFSQ", "IVFSQHybrid"};
|
|
auto finder = std::find(support_idx_vec.cbegin(), support_idx_vec.cend(), index_type);
|
|
if (finder == support_idx_vec.cend()) {
|
|
return;
|
|
}
|
|
|
|
assert(!xb.empty());
|
|
|
|
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
|
|
index_->set_preprocessor(preprocessor);
|
|
|
|
auto model = index_->Train(base_dataset, conf);
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, conf);
|
|
EXPECT_EQ(index_->Count(), nb);
|
|
EXPECT_EQ(index_->Dimension(), dim);
|
|
auto result = index_->Search(query_dataset, conf);
|
|
AssertAnns(result, nq, conf->k);
|
|
|
|
auto cpu_idx = knowhere::cloner::CopyGpuToCpu(index_, knowhere::Config());
|
|
|
|
knowhere::TimeRecorder tc("CopyToGpu");
|
|
knowhere::cloner::CopyCpuToGpu(cpu_idx, DEVICEID, knowhere::Config());
|
|
auto without_seal = tc.RecordSection("Without seal");
|
|
cpu_idx->Seal();
|
|
tc.RecordSection("seal cost");
|
|
knowhere::cloner::CopyCpuToGpu(cpu_idx, DEVICEID, knowhere::Config());
|
|
auto with_seal = tc.RecordSection("With seal");
|
|
ASSERT_GE(without_seal, with_seal);
|
|
}
|
|
|
|
#endif
|