milvus/tests/python_client/milvus_client/test_add_field_feature.py
qixuan 9228ed7b8f
test: add case about enable dynamic schema (#44355)
related issue: #42126

Signed-off-by: qixuan <673771573@qq.com>
2025-09-13 19:55:57 +08:00

693 lines
39 KiB
Python

import random
import time
import pytest
from base.client_v2_base import TestMilvusClientV2Base
from common import common_func as cf
from common import common_type as ct
from common.common_type import CaseLabel, CheckTasks
from utils.util_pymilvus import DataType
import numpy as np
prefix = "add_field"
default_vector_field_name = "vector"
default_primary_key_field_name = "id"
default_string_field_name = "varchar"
default_float_field_name = "float"
default_new_field_name = "field_new"
default_dynamic_field_name = "field_new"
exp_res = "exp_res"
default_nb = 2000
default_dim = 128
default_limit = 10
class TestMilvusClientAddFieldFeature(TestMilvusClientV2Base):
"""Test cases for add field feature with CaseLabel.L0"""
@pytest.mark.tags(CaseLabel.L0)
def test_milvus_client_collection_add_field(self):
"""
target: test self create collection normal case about add field
method: create collection with added field
expected: create collection with default schema, index, and load successfully
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
dim = 128
# 1. create collection
schema = self.create_schema(client, enable_dynamic_field=False)[0]
schema.add_field("id_string", DataType.VARCHAR, max_length=64, is_primary=True, auto_id=False)
schema.add_field("embeddings", DataType.FLOAT_VECTOR, dim=dim)
schema.add_field("title", DataType.VARCHAR, max_length=64, is_partition_key=True)
schema.add_field("nullable_field", DataType.INT64, nullable=True, default_value=10)
schema.add_field("array_field", DataType.ARRAY, element_type=DataType.INT64, max_capacity=12,
max_length=64, nullable=True)
index_params = self.prepare_index_params(client)[0]
index_params.add_index("embeddings", metric_type="COSINE")
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
collections = self.list_collections(client)[0]
assert collection_name in collections
check_items = {"collection_name": collection_name,
"dim": dim,
"consistency_level": 0,
"enable_dynamic_field": False,
"num_partitions": 16,
"id_name": "id_string",
"vector_name": "embeddings"}
self.add_collection_field(client, collection_name, field_name="field_new_int64", data_type=DataType.INT64,
nullable=True, is_cluster_key=True, mmap_enabled=True)
self.add_collection_field(client, collection_name, field_name="field_new_var", data_type=DataType.VARCHAR,
nullable=True, default_vaule="field_new_var", max_length=64, mmap_enabled=True)
check_items["add_fields"] = ["field_new_int64", "field_new_var"]
self.describe_collection(client, collection_name,
check_task=CheckTasks.check_describe_collection_property,
check_items=check_items)
index = self.list_indexes(client, collection_name)[0]
assert index == ['embeddings']
if self.has_collection(client, collection_name)[0]:
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L0)
def test_milvus_client_compact_with_added_field(self):
"""
target: test clustering compaction with added field as cluster key
method: create connection, collection, insert, add field, insert and compact
expected: successfully
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
dim = 128
# 1. create collection
schema = self.create_schema(client, enable_dynamic_field=False)[0]
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
schema.add_field(default_vector_field_name+"new", DataType.FLOAT_VECTOR, dim=dim)
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_partition_key=True)
index_params = self.prepare_index_params(client)[0]
index_params.add_index(default_vector_field_name, metric_type="COSINE")
index_params.add_index(default_vector_field_name+"new", metric_type="L2")
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
# 2. insert
rng = np.random.default_rng(seed=19530)
rows = [
{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_vector_field_name+"new": list(rng.random((1, default_dim))[0]),
default_string_field_name: str(i)} for i in range(10*default_nb)]
self.insert(client, collection_name, rows)
self.add_collection_field(client, collection_name, field_name=default_new_field_name, data_type=DataType.INT64,
nullable=True, is_clustering_key=True)
# 3. insert new field after add field
rows_new = [
{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_vector_field_name+"new": list(rng.random((1, default_dim))[0]),default_string_field_name: str(i),
default_new_field_name: random.randint(1, 1000)} for i in range(10*default_nb, 11*default_nb)]
self.insert(client, collection_name, rows_new)
self.flush(client, collection_name)
# 4. compact
compact_id = self.compact(client, collection_name, is_clustering=True)[0]
cost = 180
start = time.time()
while True:
time.sleep(1)
res = self.get_compaction_state(client, compact_id, is_clustering=True)[0]
if res == "Completed":
break
if time.time() - start > cost:
raise Exception(1, f"Compact after index cost more than {cost}s")
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_insert_with_old_and_added_field(self):
"""
target: test search (high level api) normal case
method: create connection, collection, insert, add field, insert old/new field and search
expected: search/query successfully
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
dim = 8
# 1. create collection
schema = self.create_schema(client, enable_dynamic_field=False)[0]
schema.add_field(default_primary_key_field_name, DataType.INT64, max_length=64, is_primary=True, auto_id=False)
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_partition_key=True)
schema.add_field(default_float_field_name, DataType.FLOAT, nullable=True)
index_params = self.prepare_index_params(client)[0]
index_params.add_index(default_vector_field_name, metric_type="COSINE")
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
# 2. insert before add field
vectors = cf.gen_vectors(default_nb * 3, dim, vector_data_type=DataType.FLOAT_VECTOR)
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
results = self.insert(client, collection_name, rows)[0]
assert results['insert_count'] == default_nb
# 3. add new field
self.add_collection_field(client, collection_name, field_name=default_new_field_name, data_type=DataType.VARCHAR,
nullable=True, max_length=64)
vectors_to_search = [vectors[0]]
insert_ids = [i for i in range(default_nb)]
# 4. check old dynamic data search is not impacted after add new field
self.search(client, collection_name, vectors_to_search,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids,
"pk_name": default_primary_key_field_name,
"limit": default_limit})
# 5. insert data(old field)
rows_old = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
default_float_field_name: i * 1.0,
default_string_field_name: str(i)} for i in range(default_nb, default_nb * 2)]
results = self.insert(client, collection_name, rows_old)[0]
assert results['insert_count'] == default_nb
insert_ids_with_old_field = [i for i in range(default_nb, default_nb * 2)]
# 6. insert data(new field)
rows_new = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
default_float_field_name: i * 1.0, default_string_field_name: str(i),
default_new_field_name: default_new_field_name} for i in range(default_nb * 2, default_nb * 3)]
results = self.insert(client, collection_name, rows_new)[0]
assert results['insert_count'] == default_nb
insert_ids_with_new_field = [i for i in range(default_nb * 2, default_nb * 3)]
# 7. search filtered with the new field
self.search(client, collection_name, vectors_to_search,
filter=f'field_new is null',
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids + insert_ids_with_old_field,
"pk_name": default_primary_key_field_name,
"limit": default_limit})
self.search(client, collection_name, vectors_to_search,
filter=f"field_new=='field_new'",
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids_with_new_field,
"pk_name": default_primary_key_field_name,
"limit": default_limit})
self.release_collection(client, collection_name)
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_with_added_field(self):
"""
target: test upsert (high level api) normal case
method: create connection, collection, insert, add field, upsert and search
expected: upsert/search successfully
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
collections = self.list_collections(client)[0]
assert collection_name in collections
self.describe_collection(client, collection_name,
check_task=CheckTasks.check_describe_collection_property,
check_items={"collection_name": collection_name,
"dim": default_dim,
"consistency_level": 0})
# 2. insert before add field
vectors = cf.gen_vectors(default_nb * 3, default_dim, vector_data_type=DataType.FLOAT_VECTOR)
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
results = self.insert(client, collection_name, rows)[0]
assert results['insert_count'] == default_nb
# 3. add new field
self.add_collection_field(client, collection_name, field_name=default_new_field_name, data_type=DataType.VARCHAR,
nullable=True, max_length=64)
half_default_nb = int (default_nb/2)
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
default_float_field_name: i * 1.0, default_string_field_name: str(i),
default_new_field_name: "default"} for i in range(half_default_nb)]
results = self.upsert(client, collection_name, rows)[0]
assert results['upsert_count'] == half_default_nb
vectors_to_search = [vectors[0]]
insert_ids = [i for i in range(half_default_nb)]
insert_ids_with_new_field = [i for i in range(half_default_nb, default_nb)]
# 4. search filtered with the new field
self.search(client, collection_name, vectors_to_search,
filter=f'field_new is null',
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids_with_new_field,
"pk_name": default_primary_key_field_name,
"limit": default_limit})
self.search(client, collection_name, vectors_to_search,
filter=f"field_new=='default'",
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids,
"pk_name": default_primary_key_field_name,
"limit": default_limit})
self.release_collection(client, collection_name)
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("new_field_name", [default_dynamic_field_name, "new_field"])
def test_milvus_client_search_query_enable_dynamic_and_add_field(self, new_field_name):
"""
target: test search (high level api) normal case
method: create connection, collection, insert, add field(same as dynamic and different as dynamic) and search
expected: search/query successfully
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
dim = 8
# 1. create collection
schema = self.create_schema(client, enable_dynamic_field=True)[0]
schema.add_field(default_primary_key_field_name, DataType.INT64, max_length=64, is_primary=True, auto_id=False)
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_partition_key=True)
schema.add_field(default_float_field_name, DataType.FLOAT, nullable=True)
index_params = self.prepare_index_params(client)[0]
index_params.add_index(default_vector_field_name, metric_type="COSINE")
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
# 2. insert
vectors = cf.gen_vectors(default_nb, dim, vector_data_type=DataType.FLOAT_VECTOR)
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
default_float_field_name: i * 1.0, default_string_field_name: str(i),
default_dynamic_field_name: 1} for i in range(default_nb)]
results = self.insert(client, collection_name, rows)[0]
assert results['insert_count'] == default_nb
# 3. add new field same as dynamic field name
default_value = 1
self.add_collection_field(client, collection_name, field_name=new_field_name, data_type=DataType.INT64,
nullable=True, default_value=default_value)
vectors_to_search = [vectors[0]]
insert_ids = [i for i in range(default_nb)]
# 4. check old dynamic data search is not impacted after add new field
self.search(client, collection_name, vectors_to_search, limit=default_limit,
filter=f'$meta["{default_dynamic_field_name}"] == 1',
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids,
"limit": default_limit,
"pk_name": default_primary_key_field_name})
# 5. check old dynamic data query is not impacted after add new field
for row in rows:
row[new_field_name] = default_value
self.query(client, collection_name, filter=f'$meta["{default_dynamic_field_name}"] == 1',
check_task=CheckTasks.check_query_results,
check_items={exp_res: rows,
"with_vec": True,
"pk_name": default_primary_key_field_name,
"vector_type": DataType.FLOAT_VECTOR})
# 6. search filtered with the new field
self.search(client, collection_name, vectors_to_search,
filter=f"{new_field_name} == 1",
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids,
"pk_name": default_primary_key_field_name,
"limit": default_limit})
self.search(client, collection_name, vectors_to_search,
filter=f"{new_field_name} is null",
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"pk_name": default_primary_key_field_name,
"limit": 0})
# 7. query filtered with the new field
self.query(client, collection_name, filter=f"{new_field_name} == 1",
check_task=CheckTasks.check_query_results,
check_items={exp_res: rows,
"with_vec": True,
"pk_name": default_primary_key_field_name})
self.query(client, collection_name, filter=f"{new_field_name} is null",
check_task=CheckTasks.check_query_results,
check_items={exp_res: [],
"pk_name": default_primary_key_field_name})
self.release_collection(client, collection_name)
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_add_field_with_analyzer(self):
"""
target: test add field with analyzer configuration
method: create collection, add field with standard analyzer,
insert data and verify
expected: successfully add field with analyzer and perform text search
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
dim = 8
# 1. create collection with basic schema
schema = self.create_schema(client, enable_dynamic_field=False)[0]
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_partition_key=True)
index_params = self.prepare_index_params(client)[0]
index_params.add_index(default_vector_field_name, metric_type="COSINE")
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
# 2. insert initial data before adding analyzer field
schema_info = self.describe_collection(client, collection_name)[0]
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema_info)
results = self.insert(client, collection_name, rows)[0]
assert results['insert_count'] == default_nb
# 3. add new field with standard analyzer
analyzer_params = {
"type": "standard",
"stop_words": ["for", "the", "is", "a"]
}
self.add_collection_field(client, collection_name, field_name="text_content", data_type=DataType.VARCHAR,
nullable=True, max_length=1000, enable_analyzer=True, analyzer_params=analyzer_params)
# 4. insert data with the new analyzer field
text_data = [
"The Milvus vector database is built for scale",
"This is a test document for analyzer",
"Vector search with text analysis capabilities",
"Database performance and scalability features"
]
rows_with_analyzer = []
vectors = cf.gen_vectors(default_nb, dim, vector_data_type=DataType.FLOAT_VECTOR)
for i in range(default_nb, default_nb + len(text_data)):
rows_with_analyzer.append({
default_primary_key_field_name: i,
default_vector_field_name: vectors[i - default_nb],
default_string_field_name: str(i),
"text_content": text_data[i - default_nb]
})
results = self.insert(client, collection_name, rows_with_analyzer)[0]
assert results['insert_count'] == len(text_data)
# 5. verify the analyzer field was added correctly
collection_info = self.describe_collection(client, collection_name)[0]
field_names = [field["name"] for field in collection_info["fields"]]
assert "text_content" in field_names
# 6. test text search using the analyzer field
vectors_to_search = [vectors[0]]
# Simple search without filter to verify basic functionality
search_results = self.search(
client, collection_name, vectors_to_search,
check_task=CheckTasks.check_search_results,
check_items={
"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"limit": 10, # Adjust limit to match actual results
"pk_name": default_primary_key_field_name
}
)
# Verify search returned some results
assert len(search_results[0]) > 0
# 7. test query with analyzer field - use simpler condition
query_results = self.query(
client, collection_name,
filter="text_content is not null",
check_task=CheckTasks.check_query_results,
check_items={
"pk_name": default_primary_key_field_name,
"exp_limit": 4 # We expect 4 documents with text_content
}
)
# Verify that we get results for documents with text_content
assert len(query_results[0]) > 0
# 8. test run_analyzer to verify the analyzer configuration
sample_text = "The Milvus vector database is built for scale"
analyzer_result = client.run_analyzer(sample_text, analyzer_params)
# Verify analyzer produces tokens
# (should remove stop words like "the", "is", "a")
tokens = analyzer_result.tokens
assert len(tokens) > 0
# Handle different token formats - tokens might be strings or dictionaries
if isinstance(tokens[0], str):
token_texts = tokens
else:
token_texts = [token["token"] for token in tokens]
# Check that stop words are filtered out
assert "the" not in token_texts
assert "is" not in token_texts
assert "a" not in token_texts
# 9. cleanup
self.release_collection(client, collection_name)
self.drop_collection(client, collection_name)
class TestMilvusClientAddFieldFeatureInvalid(TestMilvusClientV2Base):
"""Test invalid cases for add field feature"""
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_collection_add_vector_field(self):
"""
target: test fast create collection with add vector field
method: create collection name with add vector field
expected: raise exception
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
dim, field_name = 8, default_new_field_name
error = {ct.err_code: 1100, ct.err_msg: f"not support to add vector field, "
f"field name = {field_name}: invalid parameter"}
self.create_collection(client, collection_name, dim)
collections = self.list_collections(client)[0]
assert collection_name in collections
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.FLOAT_VECTOR,
nullable=True, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_collection_add_varchar_field_without_max_length(self):
"""
target: test fast create collection with add varchar field without maxlength
method: create collection name with add varchar field without maxlength
expected: raise exception
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
dim, field_name = 8, default_new_field_name
error = {ct.err_code: 1100, ct.err_msg: f"type param(max_length) should be specified for "
f"the field({field_name}) of collection {collection_name}"}
self.create_collection(client, collection_name, dim)
collections = self.list_collections(client)[0]
assert collection_name in collections
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.VARCHAR,
nullable=True, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_collection_add_field_as_auto_id(self):
"""
target: test fast create collection with add new field as auto id
method: create collection name with add new field as auto id
expected: raise exception
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
dim, field_name = 8, default_new_field_name
error = {ct.err_code: 1, ct.err_msg: f"The auto_id can only be specified on the primary key field"}
self.create_collection(client, collection_name, dim)
collections = self.list_collections(client)[0]
assert collection_name in collections
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.INT64,
nullable=True, auto_id=True, check_task=CheckTasks.err_res,
check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_collection_add_field_with_disable_nullable(self):
"""
target: test fast create collection with add new field as nullable false
method: create collection name with add new field as nullable false
expected: raise exception
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
dim, field_name = 8, default_new_field_name
error = {ct.err_code: 1100, ct.err_msg: f"added field must be nullable, please check it, "
f"field name = {field_name}: invalid parameter"}
self.create_collection(client, collection_name, dim)
collections = self.list_collections(client)[0]
assert collection_name in collections
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.INT64,
nullable=False, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_collection_add_field_as_partition_ley(self):
"""
target: test fast create collection with add new field as partition key
method: create collection name with add new field as partition key
expected: raise exception
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
dim, field_name = 8, default_new_field_name
error = {ct.err_code: 1100, ct.err_msg: f"not support to add partition key field, "
f"field name = {field_name}: invalid parameter"}
self.create_collection(client, collection_name, dim)
collections = self.list_collections(client)[0]
assert collection_name in collections
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.INT64,
nullable=True, is_partition_key=True,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_collection_add_field_exceed_max_length(self):
"""
target: test fast create collection with add new field with exceed max length
method: create collection name with add new field with exceed max length
expected: raise exception
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
dim, field_name = 8, default_new_field_name
error = {ct.err_code: 1100, ct.err_msg: f"the maximum length specified for the field({field_name}) "
f"should be in (0, 65535], but got 65536 instead: invalid parameter"}
self.create_collection(client, collection_name, dim)
collections = self.list_collections(client)[0]
assert collection_name in collections
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.VARCHAR,
nullable=True, max_length=65536, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_collection_add_field_as_cluster_key(self):
"""
target: test fast create collection with add new field as cluster key
method: create collection with add new field as cluster key(already has cluster key)
expected: raise exception
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
field_name = default_new_field_name
error = {ct.err_code: 1100, ct.err_msg: f"already has another clutering key field, "
f"field name: {field_name}: invalid parameter"}
schema = self.create_schema(client)[0]
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_clustering_key=True)
self.create_collection(client, collection_name, schema=schema)
collections = self.list_collections(client)[0]
assert collection_name in collections
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.INT64,
nullable=True, is_clustering_key=True,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_collection_add_field_same_other_name(self):
"""
target: test fast create collection with add new field as other same name
method: create collection with add new field as other same name
expected: raise exception
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
error = {ct.err_code: 1100, ct.err_msg: f"duplicate field name: {default_string_field_name}: invalid parameter"}
schema = self.create_schema(client)[0]
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_clustering_key=True)
self.create_collection(client, collection_name, schema=schema)
collections = self.list_collections(client)[0]
assert collection_name in collections
self.add_collection_field(client, collection_name, field_name=default_string_field_name,
data_type=DataType.VARCHAR, nullable=True, max_length=64,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_collection_add_field_exceed_max_field_number(self):
"""
target: test fast create collection with add new field with exceed max field number
method: create collection name with add new field with exceed max field number
expected: raise exception
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
dim, field_name = 8, default_new_field_name
error = {ct.err_code: 1100, ct.err_msg: f"The number of fields has reached the maximum value 64: "
f"invalid parameter"}
self.create_collection(client, collection_name, dim)
collections = self.list_collections(client)[0]
assert collection_name in collections
for i in range(62):
self.add_collection_field(client, collection_name, field_name=f"{field_name}_{i}",
data_type=DataType.VARCHAR, nullable=True, max_length=64)
self.add_collection_field(client, collection_name, field_name=field_name, data_type=DataType.VARCHAR,
nullable=True, max_length=64, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_add_field_with_reranker_unsupported(self):
"""
target: test that add_collection_field and decay ranker combination is not supported
method: create collection without reranker field, add nullable reranker field via add_collection_field,
then try to use it with decay ranker
expected: raise exception because decay ranker requires non-nullable fields but add_collection_field
only supports nullable fields, creating a technical limitation
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
dim = 8
# 1. create collection WITHOUT reranker field initially
schema = self.create_schema(client, enable_dynamic_field=False)[0]
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_partition_key=True)
# Note: NO reranker field here - we'll try to add it later via add_collection_field
index_params = self.prepare_index_params(client)[0]
index_params.add_index(default_vector_field_name, metric_type="COSINE")
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
# 2. insert initial data WITHOUT reranker field
vectors = cf.gen_vectors(default_nb, dim, vector_data_type=DataType.FLOAT_VECTOR)
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
default_string_field_name: str(i)} for i in range(default_nb)]
results = self.insert(client, collection_name, rows)[0]
assert results['insert_count'] == default_nb
# 3. Try to add nullable reranker field via add_collection_field (nullable must be True)
# This will succeed in adding the field, but then we'll test if it can work with decay reranker
# The conflict: add_collection_field only supports nullable fields, but decay reranker needs non-nullable fields
self.add_collection_field(client, collection_name, field_name=ct.default_reranker_field_name,
data_type=DataType.INT64, nullable=True, default_value=0)
# 4. Insert data with the newly added reranker field
# Generate new vectors for the second batch of data
vectors_batch2 = cf.gen_vectors(default_nb, dim, vector_data_type=DataType.FLOAT_VECTOR)
rows_with_reranker = [{default_primary_key_field_name: i, default_vector_field_name: vectors_batch2[i - default_nb],
default_string_field_name: str(i), ct.default_reranker_field_name: i}
for i in range(default_nb, default_nb * 2)]
results = self.insert(client, collection_name, rows_with_reranker)[0]
assert results['insert_count'] == default_nb
# 5. Try to use the nullable reranker field with decay reranker
# This should fail because decay reranker requires non-nullable fields for proper functionality
from pymilvus import Function, FunctionType
my_rerank_fn = Function(
name="my_reranker",
input_field_names=[ct.default_reranker_field_name],
function_type=FunctionType.RERANK,
params={
"reranker": "decay",
"function": "gauss",
"origin": 0,
"offset": 0,
"decay": 0.5,
"scale": 100
}
)
error = {ct.err_code: 65535, ct.err_msg: "Function input field cannot be nullable: field reranker_field"}
self.search(client, collection_name, [vectors[0]], ranker=my_rerank_fn,
check_task=CheckTasks.err_res, check_items=error)