Buqian Zheng 96cfae55a5
feat: [Sparse Float Vector] segcore to support sparse vector search and get raw vector by id (#30629)
This PR adds the ability to search/get sparse float vectors in segcore,
and added unit tests by modifying lots of existing tests into
parameterized ones.

https://github.com/milvus-io/milvus/issues/29419

Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
2024-03-12 09:16:30 -07:00

267 lines
7.3 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#pragma once
#include <fcntl.h>
#include <fmt/core.h>
#include <google/protobuf/text_format.h>
#include <sys/mman.h>
#include <unistd.h>
#include <cstring>
#include <filesystem>
#include <memory>
#include <string>
#include <string_view>
#include <vector>
#include "common/Consts.h"
#include "common/FieldMeta.h"
#include "common/LoadInfo.h"
#include "common/Types.h"
#include "common/EasyAssert.h"
#include "knowhere/dataset.h"
#include "knowhere/expected.h"
#include "knowhere/sparse_utils.h"
#include "simdjson.h"
namespace milvus {
#define FIELD_DATA(data_array, type) \
(data_array->scalars().type##_data().data())
#define VEC_FIELD_DATA(data_array, type) \
(data_array->vectors().type##_vector().data())
inline DatasetPtr
GenDataset(const int64_t nb, const int64_t dim, const void* xb) {
return knowhere::GenDataSet(nb, dim, xb);
}
inline const float*
GetDatasetDistance(const DatasetPtr& dataset) {
return dataset->GetDistance();
}
inline const int64_t*
GetDatasetIDs(const DatasetPtr& dataset) {
return dataset->GetIds();
}
inline int64_t
GetDatasetRows(const DatasetPtr& dataset) {
return dataset->GetRows();
}
inline const void*
GetDatasetTensor(const DatasetPtr& dataset) {
return dataset->GetTensor();
}
inline int64_t
GetDatasetDim(const DatasetPtr& dataset) {
return dataset->GetDim();
}
inline const size_t*
GetDatasetLims(const DatasetPtr& dataset) {
return dataset->GetLims();
}
inline bool
PrefixMatch(const std::string_view str, const std::string_view prefix) {
if (prefix.length() > str.length()) {
return false;
}
auto ret = strncmp(str.data(), prefix.data(), prefix.length());
if (ret != 0) {
return false;
}
return true;
}
inline DatasetPtr
GenIdsDataset(const int64_t count, const int64_t* ids) {
auto ret_ds = std::make_shared<Dataset>();
ret_ds->SetRows(count);
ret_ds->SetDim(1);
ret_ds->SetIds(ids);
ret_ds->SetIsOwner(false);
return ret_ds;
}
inline DatasetPtr
GenResultDataset(const int64_t nq,
const int64_t topk,
const int64_t* ids,
const float* distance) {
auto ret_ds = std::make_shared<Dataset>();
ret_ds->SetRows(nq);
ret_ds->SetDim(topk);
ret_ds->SetIds(ids);
ret_ds->SetDistance(distance);
ret_ds->SetIsOwner(true);
return ret_ds;
}
inline bool
PostfixMatch(const std::string_view str, const std::string_view postfix) {
if (postfix.length() > str.length()) {
return false;
}
int offset = str.length() - postfix.length();
auto ret = strncmp(str.data() + offset, postfix.data(), postfix.length());
if (ret != 0) {
return false;
}
//
// int i = postfix.length() - 1;
// int j = str.length() - 1;
// for (; i >= 0; i--, j--) {
// if (postfix[i] != str[j]) {
// return false;
// }
// }
return true;
}
inline int64_t
upper_align(int64_t value, int64_t align) {
Assert(align > 0);
auto groups = value / align + (value % align != 0);
return groups * align;
}
inline int64_t
upper_div(int64_t value, int64_t align) {
Assert(align > 0);
auto groups = value / align + (value % align != 0);
return groups;
}
inline bool
IsMetricType(const std::string_view str,
const knowhere::MetricType& metric_type) {
return !strcasecmp(str.data(), metric_type.c_str());
}
inline bool
IsFloatMetricType(const knowhere::MetricType& metric_type) {
return IsMetricType(metric_type, knowhere::metric::L2) ||
IsMetricType(metric_type, knowhere::metric::IP) ||
IsMetricType(metric_type, knowhere::metric::COSINE);
}
inline bool
PositivelyRelated(const knowhere::MetricType& metric_type) {
return IsMetricType(metric_type, knowhere::metric::IP) ||
IsMetricType(metric_type, knowhere::metric::COSINE);
}
inline std::string
KnowhereStatusString(knowhere::Status status) {
return knowhere::Status2String(status);
}
inline std::vector<IndexType>
DISK_INDEX_LIST() {
static std::vector<IndexType> ret{
knowhere::IndexEnum::INDEX_DISKANN,
};
return ret;
}
template <typename T>
inline bool
is_in_list(const T& t, std::function<std::vector<T>()> list_func) {
auto l = list_func();
return std::find(l.begin(), l.end(), t) != l.end();
}
inline bool
is_in_disk_list(const IndexType& index_type) {
return is_in_list<IndexType>(index_type, DISK_INDEX_LIST);
}
template <typename T>
std::string
Join(const std::vector<T>& items, const std::string& delimiter) {
std::stringstream ss;
for (size_t i = 0; i < items.size(); ++i) {
if (i > 0) {
ss << delimiter;
}
ss << items[i];
}
return ss.str();
}
inline std::string
GetCommonPrefix(const std::string& str1, const std::string& str2) {
size_t len = std::min(str1.length(), str2.length());
size_t i = 0;
while (i < len && str1[i] == str2[i]) ++i;
return str1.substr(0, i);
}
inline knowhere::sparse::SparseRow<float>
CopyAndWrapSparseRow(const void* data, size_t size) {
size_t num_elements =
size / knowhere::sparse::SparseRow<float>::element_size();
knowhere::sparse::SparseRow<float> row(num_elements);
std::memcpy(row.data(), data, size);
// TODO(SPARSE): validate
return row;
}
// Iterable is a list of bytes, each is a byte array representation of a single
// sparse float row. This helper function converts such byte arrays into a list
// of knowhere::sparse::SparseRow<float>. The resulting list is a deep copy of
// the source data.
template <typename Iterable>
std::unique_ptr<knowhere::sparse::SparseRow<float>[]>
SparseBytesToRows(const Iterable& rows) {
AssertInfo(rows.size() > 0, "at least 1 sparse row should be provided");
auto res =
std::make_unique<knowhere::sparse::SparseRow<float>[]>(rows.size());
for (size_t i = 0; i < rows.size(); ++i) {
res[i] =
std::move(CopyAndWrapSparseRow(rows[i].data(), rows[i].size()));
}
return res;
}
// SparseRowsToProto converts a list of knowhere::sparse::SparseRow<float> to
// a milvus::proto::schema::SparseFloatArray. The resulting proto is a deep copy
// of the source data. source(i) returns the i-th row to be copied.
inline void SparseRowsToProto(
const std::function<const knowhere::sparse::SparseRow<float>*(size_t)>&
source,
int64_t rows,
milvus::proto::schema::SparseFloatArray* proto) {
int64_t max_dim = 0;
for (size_t i = 0; i < rows; ++i) {
const auto* row = source(i);
if (row == nullptr) {
// empty row
proto->add_contents();
continue;
}
max_dim = std::max(max_dim, row->dim());
proto->add_contents(row->data(), row->data_byte_size());
}
proto->set_dim(max_dim);
}
} // namespace milvus