cai.zhang 19346fa389
feat: Geospatial Data Type and GIS Function support for milvus (#44547)
issue: #43427

This pr's main goal is merge #37417 to milvus 2.5 without conflicts.

# Main Goals

1. Create and describe collections with geospatial type
2. Insert geospatial data into the insert binlog
3. Load segments containing geospatial data into memory
4. Enable query and search can display  geospatial data
5. Support using GIS funtions like ST_EQUALS in query
6. Support R-Tree index for geometry type

# Solution

1. **Add Type**: Modify the Milvus core by adding a Geospatial type in
both the C++ and Go code layers, defining the Geospatial data structure
and the corresponding interfaces.
2. **Dependency Libraries**: Introduce necessary geospatial data
processing libraries. In the C++ source code, use Conan package
management to include the GDAL library. In the Go source code, add the
go-geom library to the go.mod file.
3. **Protocol Interface**: Revise the Milvus protocol to provide
mechanisms for Geospatial message serialization and deserialization.
4. **Data Pipeline**: Facilitate interaction between the client and
proxy using the WKT format for geospatial data. The proxy will convert
all data into WKB format for downstream processing, providing column
data interfaces, segment encapsulation, segment loading, payload
writing, and cache block management.
5. **Query Operators**: Implement simple display and support for filter
queries. Initially, focus on filtering based on spatial relationships
for a single column of geospatial literal values, providing parsing and
execution for query expressions.Now only support brutal search
7. **Client Modification**: Enable the client to handle user input for
geospatial data and facilitate end-to-end testing.Check the modification
in pymilvus.

---------

Signed-off-by: Yinwei Li <yinwei.li@zilliz.com>
Signed-off-by: Cai Zhang <cai.zhang@zilliz.com>
Co-authored-by: ZhuXi <150327960+Yinwei-Yu@users.noreply.github.com>
2025-09-28 19:43:05 +08:00

710 lines
24 KiB
C++

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <type_traits>
#include <utility>
#include <vector>
#include <memory>
#include <arrow/array.h>
#include <arrow/array/builder_primitive.h>
#include <fmt/core.h>
#include "FieldMeta.h"
#include "Types.h"
namespace milvus {
class Array {
public:
Array() = default;
~Array() = default;
Array(char* data,
int len,
size_t size,
DataType element_type,
const uint32_t* offsets_ptr)
: size_(size), length_(len), element_type_(element_type) {
data_ = std::make_unique<char[]>(size);
std::copy(data, data + size, data_.get());
if (IsVariableDataType(element_type)) {
AssertInfo(offsets_ptr != nullptr,
"For variable type elements in array, offsets_ptr must "
"be non-null");
offsets_ptr_ = std::make_unique<uint32_t[]>(len);
std::copy(offsets_ptr, offsets_ptr + len, offsets_ptr_.get());
}
}
explicit Array(const ScalarFieldProto& field_data) {
switch (field_data.data_case()) {
case ScalarFieldProto::kBoolData: {
element_type_ = DataType::BOOL;
length_ = field_data.bool_data().data().size();
size_ = length_;
data_ = std::make_unique<char[]>(size_);
for (int i = 0; i < length_; ++i) {
reinterpret_cast<bool*>(data_.get())[i] =
field_data.bool_data().data(i);
}
break;
}
case ScalarFieldProto::kIntData: {
element_type_ = DataType::INT32;
length_ = field_data.int_data().data().size();
size_ = length_ * sizeof(int32_t);
data_ = std::make_unique<char[]>(size_);
for (int i = 0; i < length_; ++i) {
reinterpret_cast<int*>(data_.get())[i] =
field_data.int_data().data(i);
}
break;
}
case ScalarFieldProto::kLongData: {
element_type_ = DataType::INT64;
length_ = field_data.long_data().data().size();
size_ = length_ * sizeof(int64_t);
data_ = std::make_unique<char[]>(size_);
for (int i = 0; i < length_; ++i) {
reinterpret_cast<int64_t*>(data_.get())[i] =
field_data.long_data().data(i);
}
break;
}
case ScalarFieldProto::kFloatData: {
element_type_ = DataType::FLOAT;
length_ = field_data.float_data().data().size();
size_ = length_ * sizeof(float);
data_ = std::make_unique<char[]>(size_);
for (int i = 0; i < length_; ++i) {
reinterpret_cast<float*>(data_.get())[i] =
field_data.float_data().data(i);
}
break;
}
case ScalarFieldProto::kDoubleData: {
element_type_ = DataType::DOUBLE;
length_ = field_data.double_data().data().size();
size_ = length_ * sizeof(double);
data_ = std::make_unique<char[]>(size_);
for (int i = 0; i < length_; ++i) {
reinterpret_cast<double*>(data_.get())[i] =
field_data.double_data().data(i);
}
break;
}
case ScalarFieldProto::kStringData: {
element_type_ = DataType::STRING;
length_ = field_data.string_data().data().size();
offsets_ptr_ = std::make_unique<uint32_t[]>(length_);
for (int i = 0; i < length_; ++i) {
offsets_ptr_[i] = size_;
size_ +=
field_data.string_data()
.data(i)
.size(); //type risk here between uint32_t vs size_t
}
data_ = std::make_unique<char[]>(size_);
for (int i = 0; i < length_; ++i) {
std::copy_n(field_data.string_data().data(i).data(),
field_data.string_data().data(i).size(),
data_.get() + offsets_ptr_[i]);
}
break;
}
default: {
// empty array
}
}
}
Array(const Array& array) noexcept
: length_{array.length_},
size_{array.size_},
element_type_{array.element_type_} {
data_ = std::make_unique<char[]>(array.size_);
std::copy(
array.data_.get(), array.data_.get() + array.size_, data_.get());
if (IsVariableDataType(array.element_type_)) {
AssertInfo(array.get_offsets_data() != nullptr,
"for array with variable length elements, offsets_ptr"
"must not be nullptr");
offsets_ptr_ = std::make_unique<uint32_t[]>(length_);
std::copy_n(
array.get_offsets_data(), array.length(), offsets_ptr_.get());
}
}
friend void
swap(Array& array1, Array& array2) noexcept {
using std::swap;
swap(array1.data_, array2.data_);
swap(array1.length_, array2.length_);
swap(array1.size_, array2.size_);
swap(array1.element_type_, array2.element_type_);
swap(array1.offsets_ptr_, array2.offsets_ptr_);
}
Array&
operator=(const Array& array) {
Array temp(array);
swap(*this, temp);
return *this;
}
Array(Array&& other) noexcept : Array() {
swap(*this, other);
}
Array&
operator=(Array&& other) noexcept {
swap(*this, other);
return *this;
}
bool
operator==(const Array& arr) const {
if (element_type_ != arr.element_type_) {
return false;
}
if (length_ != arr.length_) {
return false;
}
if (length_ == 0) {
return true;
}
switch (element_type_) {
case DataType::INT64: {
for (int i = 0; i < length_; ++i) {
if (get_data<int64_t>(i) != arr.get_data<int64_t>(i)) {
return false;
}
}
return true;
}
case DataType::BOOL: {
for (int i = 0; i < length_; ++i) {
if (get_data<bool>(i) != arr.get_data<bool>(i)) {
return false;
}
}
return true;
}
case DataType::DOUBLE: {
for (int i = 0; i < length_; ++i) {
if (get_data<double>(i) != arr.get_data<double>(i)) {
return false;
}
}
return true;
}
case DataType::FLOAT: {
for (int i = 0; i < length_; ++i) {
if (get_data<float>(i) != arr.get_data<float>(i)) {
return false;
}
}
return true;
}
case DataType::INT32:
case DataType::INT16:
case DataType::INT8: {
for (int i = 0; i < length_; ++i) {
if (get_data<int>(i) != arr.get_data<int>(i)) {
return false;
}
}
return true;
}
case DataType::STRING:
case DataType::VARCHAR:
//treat Geometry as wkb string
case DataType::GEOMETRY: {
for (int i = 0; i < length_; ++i) {
if (get_data<std::string_view>(i) !=
arr.get_data<std::string_view>(i)) {
return false;
}
}
return true;
}
default:
ThrowInfo(Unsupported, "unsupported element type for array");
}
}
template <typename T>
T
get_data(const int index) const {
AssertInfo(index >= 0 && index < length_,
"index out of range, index={}, length={}",
index,
length_);
if constexpr (std::is_same_v<T, std::string> ||
std::is_same_v<T, std::string_view>) {
size_t element_length =
(index == length_ - 1)
? size_ - offsets_ptr_[length_ - 1]
: offsets_ptr_[index + 1] - offsets_ptr_[index];
return T(data_.get() + offsets_ptr_[index], element_length);
}
if constexpr (std::is_same_v<T, int> || std::is_same_v<T, int64_t> ||
std::is_same_v<T, int8_t> || std::is_same_v<T, int16_t> ||
std::is_same_v<T, float> || std::is_same_v<T, double>) {
switch (element_type_) {
case DataType::INT8:
case DataType::INT16:
case DataType::INT32:
return static_cast<T>(
reinterpret_cast<int32_t*>(data_.get())[index]);
case DataType::INT64:
return static_cast<T>(
reinterpret_cast<int64_t*>(data_.get())[index]);
case DataType::FLOAT:
return static_cast<T>(
reinterpret_cast<float*>(data_.get())[index]);
case DataType::DOUBLE:
return static_cast<T>(
reinterpret_cast<double*>(data_.get())[index]);
default:
ThrowInfo(Unsupported,
"unsupported element type for array");
}
}
return reinterpret_cast<T*>(data_.get())[index];
}
uint32_t*
get_offsets_data() const {
return offsets_ptr_.get();
}
ScalarFieldProto
output_data() const {
ScalarFieldProto data_array;
switch (element_type_) {
case DataType::BOOL: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<bool>(j);
data_array.mutable_bool_data()->add_data(element);
}
break;
}
case DataType::INT8:
case DataType::INT16:
case DataType::INT32: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<int>(j);
data_array.mutable_int_data()->add_data(element);
}
break;
}
case DataType::INT64: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<int64_t>(j);
data_array.mutable_long_data()->add_data(element);
}
break;
}
case DataType::STRING:
case DataType::VARCHAR: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<std::string>(j);
data_array.mutable_string_data()->add_data(element);
}
break;
}
case DataType::FLOAT: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<float>(j);
data_array.mutable_float_data()->add_data(element);
}
break;
}
case DataType::DOUBLE: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<double>(j);
data_array.mutable_double_data()->add_data(element);
}
break;
}
case DataType::GEOMETRY: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<std::string>(j);
data_array.mutable_geometry_data()->add_data(element);
}
break;
}
default: {
// empty array
}
}
return data_array;
}
int
length() const {
return length_;
}
size_t
byte_size() const {
return size_;
}
DataType
get_element_type() const {
return element_type_;
}
const char*
data() const {
return data_.get();
}
bool
is_same_array(const proto::plan::Array& arr2) const {
if (arr2.array_size() != length_) {
return false;
}
if (length_ == 0) {
return true;
}
if (!arr2.same_type()) {
return false;
}
switch (element_type_) {
case DataType::BOOL: {
for (int i = 0; i < length_; i++) {
auto val = get_data<bool>(i);
if (val != arr2.array(i).bool_val()) {
return false;
}
}
return true;
}
case DataType::INT8:
case DataType::INT16:
case DataType::INT32: {
for (int i = 0; i < length_; i++) {
auto val = get_data<int>(i);
if (val != arr2.array(i).int64_val()) {
return false;
}
}
return true;
}
case DataType::INT64: {
for (int i = 0; i < length_; i++) {
auto val = get_data<int64_t>(i);
if (val != arr2.array(i).int64_val()) {
return false;
}
}
return true;
}
case DataType::FLOAT: {
for (int i = 0; i < length_; i++) {
auto val = get_data<float>(i);
if (val != arr2.array(i).float_val()) {
return false;
}
}
return true;
}
case DataType::DOUBLE: {
for (int i = 0; i < length_; i++) {
auto val = get_data<double>(i);
if (val != arr2.array(i).float_val()) {
return false;
}
}
return true;
}
case DataType::VARCHAR:
case DataType::STRING:
case DataType::GEOMETRY: {
for (int i = 0; i < length_; i++) {
auto val = get_data<std::string>(i);
if (val != arr2.array(i).string_val()) {
return false;
}
}
return true;
}
default:
return false;
}
}
private:
std::unique_ptr<char[]> data_{nullptr};
int length_ = 0;
int size_ = 0;
DataType element_type_ = DataType::NONE;
std::unique_ptr<uint32_t[]> offsets_ptr_{nullptr};
};
class ArrayView {
public:
ArrayView() = default;
ArrayView(const ArrayView& other)
: data_(other.data_),
length_(other.length_),
size_(other.size_),
element_type_(other.element_type_),
offsets_ptr_(other.offsets_ptr_) {
AssertInfo(data_ != nullptr,
"data pointer for ArrayView cannot be nullptr");
if (IsVariableDataType(element_type_)) {
AssertInfo(offsets_ptr_ != nullptr,
"for array with variable length elements, offsets_ptr "
"must not be nullptr");
}
}
ArrayView(char* data,
int len,
size_t size,
DataType element_type,
uint32_t* offsets_ptr)
: data_(data),
length_(len),
size_(size),
element_type_(element_type),
offsets_ptr_(offsets_ptr) {
AssertInfo(data != nullptr,
"data pointer for ArrayView cannot be nullptr");
if (IsVariableDataType(element_type_)) {
AssertInfo(offsets_ptr != nullptr,
"for array with variable length elements, offsets_ptr "
"must not be nullptr");
}
}
template <typename T>
T
get_data(const int index) const {
AssertInfo(index >= 0 && index < length_,
"index out of range, index={}, length={}",
index,
length_);
if constexpr (std::is_same_v<T, std::string> ||
std::is_same_v<T, std::string_view>) {
size_t element_length =
(index == length_ - 1)
? size_ - offsets_ptr_[length_ - 1]
: offsets_ptr_[index + 1] - offsets_ptr_[index];
return T(data_ + offsets_ptr_[index], element_length);
}
if constexpr (std::is_same_v<T, int> || std::is_same_v<T, int64_t> ||
std::is_same_v<T, float> || std::is_same_v<T, double>) {
switch (element_type_) {
case DataType::INT8:
case DataType::INT16:
case DataType::INT32:
return static_cast<T>(
reinterpret_cast<int32_t*>(data_)[index]);
case DataType::INT64:
return static_cast<T>(
reinterpret_cast<int64_t*>(data_)[index]);
case DataType::FLOAT:
return static_cast<T>(
reinterpret_cast<float*>(data_)[index]);
case DataType::DOUBLE:
return static_cast<T>(
reinterpret_cast<double*>(data_)[index]);
default:
ThrowInfo(Unsupported,
"unsupported element type for array");
}
}
return reinterpret_cast<T*>(data_)[index];
}
ScalarFieldProto
output_data() const {
ScalarFieldProto data_array;
switch (element_type_) {
case DataType::BOOL: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<bool>(j);
data_array.mutable_bool_data()->add_data(element);
}
break;
}
case DataType::INT8:
case DataType::INT16:
case DataType::INT32: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<int>(j);
data_array.mutable_int_data()->add_data(element);
}
break;
}
case DataType::INT64: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<int64_t>(j);
data_array.mutable_long_data()->add_data(element);
}
break;
}
case DataType::STRING:
case DataType::VARCHAR: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<std::string>(j);
data_array.mutable_string_data()->add_data(element);
}
break;
}
case DataType::FLOAT: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<float>(j);
data_array.mutable_float_data()->add_data(element);
}
break;
}
case DataType::DOUBLE: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<double>(j);
data_array.mutable_double_data()->add_data(element);
}
break;
}
case DataType::GEOMETRY: {
for (int j = 0; j < length_; ++j) {
auto element = get_data<std::string>(j);
data_array.mutable_geometry_data()->add_data(element);
}
break;
}
default: {
// empty array
}
}
return data_array;
}
int
length() const {
return length_;
}
size_t
byte_size() const {
return size_;
}
DataType
get_element_type() const {
return element_type_;
}
const void*
data() const {
return data_;
}
bool
is_same_array(const proto::plan::Array& arr2) const {
if (arr2.array_size() != length_) {
return false;
}
if (!arr2.same_type()) {
return false;
}
switch (element_type_) {
case DataType::BOOL: {
for (int i = 0; i < length_; i++) {
auto val = get_data<bool>(i);
if (val != arr2.array(i).bool_val()) {
return false;
}
}
return true;
}
case DataType::INT8:
case DataType::INT16:
case DataType::INT32: {
for (int i = 0; i < length_; i++) {
auto val = get_data<int>(i);
if (val != arr2.array(i).int64_val()) {
return false;
}
}
return true;
}
case DataType::INT64: {
for (int i = 0; i < length_; i++) {
auto val = get_data<int64_t>(i);
if (val != arr2.array(i).int64_val()) {
return false;
}
}
return true;
}
case DataType::FLOAT: {
for (int i = 0; i < length_; i++) {
auto val = get_data<float>(i);
if (val != arr2.array(i).float_val()) {
return false;
}
}
return true;
}
case DataType::DOUBLE: {
for (int i = 0; i < length_; i++) {
auto val = get_data<double>(i);
if (val != arr2.array(i).float_val()) {
return false;
}
}
return true;
}
case DataType::VARCHAR:
case DataType::STRING:
case DataType::GEOMETRY: {
for (int i = 0; i < length_; i++) {
auto val = get_data<std::string>(i);
if (val != arr2.array(i).string_val()) {
return false;
}
}
return true;
}
default:
return length_ == 0;
}
}
private:
char* data_{nullptr};
int length_ = 0;
int size_ = 0;
DataType element_type_ = DataType::NONE;
//offsets ptr
uint32_t* offsets_ptr_{nullptr};
};
} // namespace milvus