milvus/internal/util/function/cohere_embedding_provider.go
junjiejiangjjj bb7df40fc1
feat: Http interface supports rerank (#41486)
https://github.com/milvus-io/milvus/issues/35856

Signed-off-by: junjie.jiang <junjie.jiang@zilliz.com>
2025-04-28 23:02:50 +08:00

175 lines
5.5 KiB
Go

/*
* # Licensed to the LF AI & Data foundation under one
* # or more contributor license agreements. See the NOTICE file
* # distributed with this work for additional information
* # regarding copyright ownership. The ASF licenses this file
* # to you under the Apache License, Version 2.0 (the
* # "License"); you may not use this file except in compliance
* # with the License. You may obtain a copy of the License at
* #
* # http://www.apache.org/licenses/LICENSE-2.0
* #
* # Unless required by applicable law or agreed to in writing, software
* # distributed under the License is distributed on an "AS IS" BASIS,
* # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* # See the License for the specific language governing permissions and
* # limitations under the License.
*/
package function
import (
"fmt"
"strings"
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
"github.com/milvus-io/milvus/internal/util/credentials"
"github.com/milvus-io/milvus/internal/util/function/models/cohere"
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
)
type CohereEmbeddingProvider struct {
fieldDim int64
client *cohere.CohereEmbedding
modelName string
truncate string
embdType embeddingType
outputType string
maxBatch int
timeoutSec int64
}
func createCohereEmbeddingClient(apiKey string, url string) (*cohere.CohereEmbedding, error) {
if apiKey == "" {
return nil, fmt.Errorf("Missing credentials config or configure the %s environment variable in the Milvus service.", cohereAIAKEnvStr)
}
if url == "" {
url = "https://api.cohere.com/v2/embed"
}
c := cohere.NewCohereEmbeddingClient(apiKey, url)
return c, nil
}
func NewCohereEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema, params map[string]string, credentials *credentials.Credentials) (*CohereEmbeddingProvider, error) {
fieldDim, err := typeutil.GetDim(fieldSchema)
if err != nil {
return nil, err
}
apiKey, url, err := parseAKAndURL(credentials, functionSchema.Params, params, cohereAIAKEnvStr)
if err != nil {
return nil, err
}
var modelName string
truncate := "END"
for _, param := range functionSchema.Params {
switch strings.ToLower(param.Key) {
case modelNameParamKey:
modelName = param.Value
case truncateParamKey:
if param.Value != "NONE" && param.Value != "START" && param.Value != "END" {
return nil, fmt.Errorf("Illegal parameters, %s only supports [NONE, START, END]", truncateParamKey)
}
truncate = param.Value
default:
}
}
c, err := createCohereEmbeddingClient(apiKey, url)
if err != nil {
return nil, err
}
embdType := getEmbdType(fieldSchema.DataType)
if embdType == unsupportEmbd {
return nil, fmt.Errorf("Unsupport output type: %s", fieldSchema.DataType)
}
outputType := func() string {
if embdType == float32Embd {
return "float"
}
return "int8"
}()
provider := CohereEmbeddingProvider{
client: c,
fieldDim: fieldDim,
modelName: modelName,
truncate: truncate,
embdType: embdType,
outputType: outputType,
maxBatch: 96,
timeoutSec: 30,
}
return &provider, nil
}
func (provider *CohereEmbeddingProvider) MaxBatch() int {
return 5 * provider.maxBatch
}
func (provider *CohereEmbeddingProvider) FieldDim() int64 {
return provider.fieldDim
}
// Specifies the type of input passed to the model. Required for embedding models v3 and higher.
func (provider *CohereEmbeddingProvider) getInputType(mode TextEmbeddingMode) string {
// v2 models not support instructor
if strings.HasSuffix(provider.modelName, "v2.0") {
return ""
}
if mode == InsertMode {
return "search_document" // Used for embeddings stored in a vector database for search use-cases.
}
return "search_query" // Used for embeddings of search queries run against a vector DB to find relevant documents.
}
func (provider *CohereEmbeddingProvider) CallEmbedding(texts []string, mode TextEmbeddingMode) (any, error) {
numRows := len(texts)
inputType := provider.getInputType(mode)
embRet := newEmbdResult(numRows, provider.embdType)
for i := 0; i < numRows; i += provider.maxBatch {
end := i + provider.maxBatch
if end > numRows {
end = numRows
}
resp, err := provider.client.Embedding(provider.modelName, texts[i:end], inputType, provider.outputType, provider.truncate, provider.timeoutSec)
if err != nil {
return nil, err
}
if provider.embdType == float32Embd {
if end-i != len(resp.Embeddings.Float) {
return nil, fmt.Errorf("Get embedding failed. The number of texts and embeddings does not match text:[%d], embedding:[%d]", end-i, len(resp.Embeddings.Float))
}
for _, item := range resp.Embeddings.Float {
if len(item) != int(provider.fieldDim) {
return nil, fmt.Errorf("The required embedding dim is [%d], but the embedding obtained from the model is [%d]",
provider.fieldDim, len(item))
}
}
embRet.append(resp.Embeddings.Float)
} else {
if end-i != len(resp.Embeddings.Int8) {
return nil, fmt.Errorf("Get embedding failed. The number of texts and embeddings does not match text:[%d], embedding:[%d]", end-i, len(resp.Embeddings.Int8))
}
for _, item := range resp.Embeddings.Int8 {
if len(item) != int(provider.fieldDim) {
return nil, fmt.Errorf("The required embedding dim is [%d], but the embedding obtained from the model is [%d]",
provider.fieldDim, len(item))
}
}
embRet.append(resp.Embeddings.Int8)
}
}
if embRet.eType == float32Embd {
return embRet.floatEmbds, nil
}
return embRet.int8Embds, nil
}