mirror of
https://gitee.com/milvus-io/milvus.git
synced 2026-01-07 19:31:51 +08:00
issue: #42533 Signed-off-by: luzhang <luzhang@zilliz.com> Co-authored-by: luzhang <luzhang@zilliz.com>
1938 lines
76 KiB
C++
1938 lines
76 KiB
C++
// Licensed to the LF AI & Data foundation under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "UnaryExpr.h"
|
|
#include <optional>
|
|
#include <boost/regex.hpp>
|
|
#include "common/EasyAssert.h"
|
|
#include "common/Json.h"
|
|
#include "common/Types.h"
|
|
#include "exec/expression/ExprCache.h"
|
|
#include "common/type_c.h"
|
|
#include "log/Log.h"
|
|
#include "monitor/Monitor.h"
|
|
#include "common/ScopedTimer.h"
|
|
|
|
namespace milvus {
|
|
namespace exec {
|
|
template <typename T>
|
|
bool
|
|
PhyUnaryRangeFilterExpr::CanUseIndexForArray() {
|
|
typedef std::
|
|
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
|
|
IndexInnerType;
|
|
using Index = index::ScalarIndex<IndexInnerType>;
|
|
|
|
for (size_t i = current_index_chunk_; i < num_index_chunk_; i++) {
|
|
auto index_ptr = dynamic_cast<const Index*>(pinned_index_[i].get());
|
|
|
|
if (index_ptr->GetIndexType() ==
|
|
milvus::index::ScalarIndexType::HYBRID ||
|
|
index_ptr->GetIndexType() ==
|
|
milvus::index::ScalarIndexType::BITMAP) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <>
|
|
bool
|
|
PhyUnaryRangeFilterExpr::CanUseIndexForArray<milvus::Array>() {
|
|
bool res;
|
|
if (!SegmentExpr::CanUseIndex()) {
|
|
use_index_ = res = false;
|
|
return res;
|
|
}
|
|
switch (expr_->column_.element_type_) {
|
|
case DataType::BOOL:
|
|
res = CanUseIndexForArray<bool>();
|
|
break;
|
|
case DataType::INT8:
|
|
res = CanUseIndexForArray<int8_t>();
|
|
break;
|
|
case DataType::INT16:
|
|
res = CanUseIndexForArray<int16_t>();
|
|
break;
|
|
case DataType::INT32:
|
|
res = CanUseIndexForArray<int32_t>();
|
|
break;
|
|
case DataType::INT64:
|
|
res = CanUseIndexForArray<int64_t>();
|
|
break;
|
|
case DataType::FLOAT:
|
|
case DataType::DOUBLE:
|
|
// not accurate on floating point number, rollback to bruteforce.
|
|
res = false;
|
|
break;
|
|
case DataType::VARCHAR:
|
|
case DataType::STRING:
|
|
res = CanUseIndexForArray<std::string_view>();
|
|
break;
|
|
default:
|
|
ThrowInfo(DataTypeInvalid,
|
|
"unsupported element type when execute array "
|
|
"equal for index: {}",
|
|
expr_->column_.element_type_);
|
|
}
|
|
use_index_ = res;
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
VectorPtr
|
|
PhyUnaryRangeFilterExpr::ExecRangeVisitorImplArrayForIndex(EvalCtx& context) {
|
|
return ExecRangeVisitorImplArray<T>(context);
|
|
}
|
|
|
|
template <>
|
|
VectorPtr
|
|
PhyUnaryRangeFilterExpr::ExecRangeVisitorImplArrayForIndex<proto::plan::Array>(
|
|
EvalCtx& context) {
|
|
switch (expr_->op_type_) {
|
|
case proto::plan::Equal:
|
|
case proto::plan::NotEqual: {
|
|
switch (expr_->column_.element_type_) {
|
|
case DataType::BOOL: {
|
|
return ExecArrayEqualForIndex<bool>(
|
|
context, expr_->op_type_ == proto::plan::NotEqual);
|
|
}
|
|
case DataType::INT8: {
|
|
return ExecArrayEqualForIndex<int8_t>(
|
|
context, expr_->op_type_ == proto::plan::NotEqual);
|
|
}
|
|
case DataType::INT16: {
|
|
return ExecArrayEqualForIndex<int16_t>(
|
|
context, expr_->op_type_ == proto::plan::NotEqual);
|
|
}
|
|
case DataType::INT32: {
|
|
return ExecArrayEqualForIndex<int32_t>(
|
|
context, expr_->op_type_ == proto::plan::NotEqual);
|
|
}
|
|
case DataType::INT64: {
|
|
return ExecArrayEqualForIndex<int64_t>(
|
|
context, expr_->op_type_ == proto::plan::NotEqual);
|
|
}
|
|
case DataType::FLOAT:
|
|
case DataType::DOUBLE: {
|
|
// not accurate on floating point number, rollback to bruteforce.
|
|
return ExecRangeVisitorImplArray<proto::plan::Array>(
|
|
context);
|
|
}
|
|
case DataType::VARCHAR: {
|
|
if (segment_->type() == SegmentType::Growing) {
|
|
return ExecArrayEqualForIndex<std::string>(
|
|
context, expr_->op_type_ == proto::plan::NotEqual);
|
|
} else {
|
|
return ExecArrayEqualForIndex<std::string_view>(
|
|
context, expr_->op_type_ == proto::plan::NotEqual);
|
|
}
|
|
}
|
|
default:
|
|
ThrowInfo(DataTypeInvalid,
|
|
"unsupported element type when execute array "
|
|
"equal for index: {}",
|
|
expr_->column_.element_type_);
|
|
}
|
|
}
|
|
default:
|
|
return ExecRangeVisitorImplArray<proto::plan::Array>(context);
|
|
}
|
|
}
|
|
|
|
void
|
|
PhyUnaryRangeFilterExpr::Eval(EvalCtx& context, VectorPtr& result) {
|
|
tracer::AutoSpan span(
|
|
"PhyUnaryRangeFilterExpr::Eval", tracer::GetRootSpan(), true);
|
|
span.GetSpan()->SetAttribute("data_type",
|
|
static_cast<int>(expr_->column_.data_type_));
|
|
span.GetSpan()->SetAttribute("op_type", static_cast<int>(expr_->op_type_));
|
|
|
|
auto input = context.get_offset_input();
|
|
SetHasOffsetInput((input != nullptr));
|
|
auto data_type = expr_->column_.data_type_;
|
|
if (expr_->column_.element_level_) {
|
|
data_type = expr_->column_.element_type_;
|
|
}
|
|
switch (data_type) {
|
|
case DataType::BOOL: {
|
|
result = ExecRangeVisitorImpl<bool>(context);
|
|
break;
|
|
}
|
|
case DataType::INT8: {
|
|
result = ExecRangeVisitorImpl<int8_t>(context);
|
|
break;
|
|
}
|
|
case DataType::INT16: {
|
|
result = ExecRangeVisitorImpl<int16_t>(context);
|
|
break;
|
|
}
|
|
case DataType::INT32: {
|
|
result = ExecRangeVisitorImpl<int32_t>(context);
|
|
break;
|
|
}
|
|
case DataType::INT64: {
|
|
result = ExecRangeVisitorImpl<int64_t>(context);
|
|
break;
|
|
}
|
|
case DataType::TIMESTAMPTZ: {
|
|
result = ExecRangeVisitorImpl<int64_t>(context);
|
|
break;
|
|
}
|
|
case DataType::FLOAT: {
|
|
result = ExecRangeVisitorImpl<float>(context);
|
|
break;
|
|
}
|
|
case DataType::DOUBLE: {
|
|
result = ExecRangeVisitorImpl<double>(context);
|
|
break;
|
|
}
|
|
case DataType::VARCHAR: {
|
|
if (segment_->type() == SegmentType::Growing &&
|
|
!storage::MmapManager::GetInstance()
|
|
.GetMmapConfig()
|
|
.growing_enable_mmap) {
|
|
result = ExecRangeVisitorImpl<std::string>(context);
|
|
} else {
|
|
result = ExecRangeVisitorImpl<std::string_view>(context);
|
|
}
|
|
break;
|
|
}
|
|
case DataType::JSON: {
|
|
auto val_type = expr_->val_.val_case();
|
|
auto val_type_inner = FromValCase(val_type);
|
|
if (CanUseNgramIndex() && !has_offset_input_) {
|
|
auto res = ExecNgramMatch();
|
|
// If nullopt is returned, it means the query cannot be
|
|
// optimized by ngram index. Forward it to the normal path.
|
|
if (res.has_value()) {
|
|
result = res.value();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (CanUseIndexForJson(val_type_inner) && !has_offset_input_) {
|
|
switch (val_type) {
|
|
case proto::plan::GenericValue::ValCase::kBoolVal:
|
|
result = ExecRangeVisitorImplForIndex<bool>();
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kInt64Val:
|
|
if (expr_->val_.has_int64_val()) {
|
|
proto::plan::GenericValue double_val;
|
|
double_val.set_float_val(
|
|
static_cast<double>(expr_->val_.int64_val()));
|
|
value_arg_.SetValue<double>(double_val);
|
|
arg_inited_ = true;
|
|
}
|
|
result = ExecRangeVisitorImplForIndex<double>();
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kFloatVal:
|
|
result = ExecRangeVisitorImplForIndex<double>();
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kStringVal:
|
|
result = ExecRangeVisitorImplForIndex<std::string>();
|
|
break;
|
|
default:
|
|
ThrowInfo(
|
|
DataTypeInvalid, "unknown data type: {}", val_type);
|
|
}
|
|
} else {
|
|
switch (val_type) {
|
|
case proto::plan::GenericValue::ValCase::kBoolVal:
|
|
result = ExecRangeVisitorImplJson<bool>(context);
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kInt64Val:
|
|
result = ExecRangeVisitorImplJson<int64_t>(context);
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kFloatVal:
|
|
result = ExecRangeVisitorImplJson<double>(context);
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kStringVal:
|
|
result = ExecRangeVisitorImplJson<std::string>(context);
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kArrayVal:
|
|
result = ExecRangeVisitorImplJson<proto::plan::Array>(
|
|
context);
|
|
break;
|
|
default:
|
|
ThrowInfo(
|
|
DataTypeInvalid, "unknown data type: {}", val_type);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DataType::ARRAY: {
|
|
auto val_type = expr_->val_.val_case();
|
|
switch (val_type) {
|
|
case proto::plan::GenericValue::ValCase::kBoolVal:
|
|
SetNotUseIndex();
|
|
result = ExecRangeVisitorImplArray<bool>(context);
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kInt64Val:
|
|
SetNotUseIndex();
|
|
result = ExecRangeVisitorImplArray<int64_t>(context);
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kFloatVal:
|
|
SetNotUseIndex();
|
|
result = ExecRangeVisitorImplArray<double>(context);
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kStringVal:
|
|
SetNotUseIndex();
|
|
result = ExecRangeVisitorImplArray<std::string>(context);
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kArrayVal:
|
|
if (!has_offset_input_ &&
|
|
CanUseIndexForArray<milvus::Array>()) {
|
|
result = ExecRangeVisitorImplArrayForIndex<
|
|
proto::plan::Array>(context);
|
|
} else {
|
|
result = ExecRangeVisitorImplArray<proto::plan::Array>(
|
|
context);
|
|
}
|
|
break;
|
|
default:
|
|
ThrowInfo(
|
|
DataTypeInvalid, "unknown data type: {}", val_type);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
ThrowInfo(DataTypeInvalid,
|
|
"unsupported data type: {}",
|
|
expr_->column_.data_type_);
|
|
}
|
|
}
|
|
|
|
template <typename ValueType>
|
|
VectorPtr
|
|
PhyUnaryRangeFilterExpr::ExecRangeVisitorImplArray(EvalCtx& context) {
|
|
auto* input = context.get_offset_input();
|
|
const auto& bitmap_input = context.get_bitmap_input();
|
|
auto real_batch_size =
|
|
has_offset_input_ ? input->size() : GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
auto res_vec =
|
|
std::make_shared<ColumnVector>(TargetBitmap(real_batch_size, false),
|
|
TargetBitmap(real_batch_size, true));
|
|
TargetBitmapView res(res_vec->GetRawData(), real_batch_size);
|
|
TargetBitmapView valid_res(res_vec->GetValidRawData(), real_batch_size);
|
|
|
|
if (!arg_inited_) {
|
|
value_arg_.SetValue<ValueType>(expr_->val_);
|
|
arg_inited_ = true;
|
|
}
|
|
ValueType val = value_arg_.GetValue<ValueType>();
|
|
auto op_type = expr_->op_type_;
|
|
int index = -1;
|
|
if (expr_->column_.nested_path_.size() > 0) {
|
|
index = std::stoi(expr_->column_.nested_path_[0]);
|
|
}
|
|
int processed_cursor = 0;
|
|
auto execute_sub_batch =
|
|
[ op_type, &processed_cursor, &
|
|
bitmap_input ]<FilterType filter_type = FilterType::sequential>(
|
|
const milvus::ArrayView* data,
|
|
const bool* valid_data,
|
|
const int32_t* offsets,
|
|
const int size,
|
|
TargetBitmapView res,
|
|
TargetBitmapView valid_res,
|
|
ValueType val,
|
|
int index) {
|
|
switch (op_type) {
|
|
case proto::plan::GreaterThan: {
|
|
UnaryElementFuncForArray<ValueType,
|
|
proto::plan::GreaterThan,
|
|
filter_type>
|
|
func;
|
|
func(data,
|
|
valid_data,
|
|
size,
|
|
val,
|
|
index,
|
|
res,
|
|
valid_res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::GreaterEqual: {
|
|
UnaryElementFuncForArray<ValueType,
|
|
proto::plan::GreaterEqual,
|
|
filter_type>
|
|
func;
|
|
func(data,
|
|
valid_data,
|
|
size,
|
|
val,
|
|
index,
|
|
res,
|
|
valid_res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::LessThan: {
|
|
UnaryElementFuncForArray<ValueType,
|
|
proto::plan::LessThan,
|
|
filter_type>
|
|
func;
|
|
func(data,
|
|
valid_data,
|
|
size,
|
|
val,
|
|
index,
|
|
res,
|
|
valid_res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::LessEqual: {
|
|
UnaryElementFuncForArray<ValueType,
|
|
proto::plan::LessEqual,
|
|
filter_type>
|
|
func;
|
|
func(data,
|
|
valid_data,
|
|
size,
|
|
val,
|
|
index,
|
|
res,
|
|
valid_res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::Equal: {
|
|
UnaryElementFuncForArray<ValueType,
|
|
proto::plan::Equal,
|
|
filter_type>
|
|
func;
|
|
func(data,
|
|
valid_data,
|
|
size,
|
|
val,
|
|
index,
|
|
res,
|
|
valid_res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::NotEqual: {
|
|
UnaryElementFuncForArray<ValueType,
|
|
proto::plan::NotEqual,
|
|
filter_type>
|
|
func;
|
|
func(data,
|
|
valid_data,
|
|
size,
|
|
val,
|
|
index,
|
|
res,
|
|
valid_res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::PrefixMatch: {
|
|
UnaryElementFuncForArray<ValueType,
|
|
proto::plan::PrefixMatch,
|
|
filter_type>
|
|
func;
|
|
func(data,
|
|
valid_data,
|
|
size,
|
|
val,
|
|
index,
|
|
res,
|
|
valid_res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::Match: {
|
|
UnaryElementFuncForArray<ValueType,
|
|
proto::plan::Match,
|
|
filter_type>
|
|
func;
|
|
func(data,
|
|
valid_data,
|
|
size,
|
|
val,
|
|
index,
|
|
res,
|
|
valid_res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::PostfixMatch: {
|
|
UnaryElementFuncForArray<ValueType,
|
|
proto::plan::PostfixMatch,
|
|
filter_type>
|
|
func;
|
|
func(data,
|
|
valid_data,
|
|
size,
|
|
val,
|
|
index,
|
|
res,
|
|
valid_res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::InnerMatch: {
|
|
UnaryElementFuncForArray<ValueType,
|
|
proto::plan::InnerMatch,
|
|
filter_type>
|
|
func;
|
|
func(data,
|
|
valid_data,
|
|
size,
|
|
val,
|
|
index,
|
|
res,
|
|
valid_res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
default:
|
|
ThrowInfo(
|
|
OpTypeInvalid,
|
|
fmt::format("unsupported operator type for unary expr: {}",
|
|
op_type));
|
|
}
|
|
processed_cursor += size;
|
|
};
|
|
int64_t processed_size;
|
|
if (has_offset_input_) {
|
|
processed_size =
|
|
ProcessDataByOffsets<milvus::ArrayView>(execute_sub_batch,
|
|
std::nullptr_t{},
|
|
input,
|
|
res,
|
|
valid_res,
|
|
val,
|
|
index);
|
|
} else {
|
|
processed_size = ProcessDataChunks<milvus::ArrayView>(
|
|
execute_sub_batch, std::nullptr_t{}, res, valid_res, val, index);
|
|
}
|
|
AssertInfo(processed_size == real_batch_size,
|
|
"internal error: expr processed rows {} not equal "
|
|
"expect batch size {}",
|
|
processed_size,
|
|
real_batch_size);
|
|
return res_vec;
|
|
}
|
|
|
|
template <typename T>
|
|
VectorPtr
|
|
PhyUnaryRangeFilterExpr::ExecArrayEqualForIndex(EvalCtx& context,
|
|
bool reverse) {
|
|
typedef std::
|
|
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
|
|
IndexInnerType;
|
|
using Index = index::ScalarIndex<IndexInnerType>;
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
// get all elements.
|
|
auto val = GetValueFromProto<proto::plan::Array>(expr_->val_);
|
|
if (val.array_size() == 0) {
|
|
// rollback to bruteforce. no candidates will be filtered out via index.
|
|
return ExecRangeVisitorImplArray<proto::plan::Array>(context);
|
|
}
|
|
|
|
// cache the result to suit the framework.
|
|
auto batch_res = ProcessIndexChunks<IndexInnerType>([this, &val, reverse](
|
|
Index* _) {
|
|
boost::container::vector<IndexInnerType> elems;
|
|
for (auto const& element : val.array()) {
|
|
auto e = GetValueFromProto<IndexInnerType>(element);
|
|
if (std::find(elems.begin(), elems.end(), e) == elems.end()) {
|
|
elems.push_back(e);
|
|
}
|
|
}
|
|
|
|
// filtering by index, get candidates.
|
|
std::function<bool(milvus::proto::plan::Array& /*val*/,
|
|
int64_t /*offset*/)>
|
|
is_same;
|
|
|
|
if (segment_->is_chunked()) {
|
|
is_same = [this, reverse](milvus::proto::plan::Array& val,
|
|
int64_t offset) -> bool {
|
|
auto [chunk_idx, chunk_offset] =
|
|
segment_->get_chunk_by_offset(field_id_, offset);
|
|
auto pw = segment_->template chunk_view<milvus::ArrayView>(
|
|
op_ctx_, field_id_, chunk_idx);
|
|
auto chunk = pw.get();
|
|
return chunk.first[chunk_offset].is_same_array(val) ^ reverse;
|
|
};
|
|
} else {
|
|
auto size_per_chunk = segment_->size_per_chunk();
|
|
is_same = [this, size_per_chunk, reverse](
|
|
milvus::proto::plan::Array& val,
|
|
int64_t offset) -> bool {
|
|
auto chunk_idx = offset / size_per_chunk;
|
|
auto chunk_offset = offset % size_per_chunk;
|
|
auto pw = segment_->template chunk_data<milvus::ArrayView>(
|
|
op_ctx_, field_id_, chunk_idx);
|
|
auto chunk = pw.get();
|
|
auto array_view = chunk.data() + chunk_offset;
|
|
return array_view->is_same_array(val) ^ reverse;
|
|
};
|
|
}
|
|
|
|
// collect all candidates.
|
|
std::unordered_set<size_t> candidates;
|
|
std::unordered_set<size_t> tmp_candidates;
|
|
auto first_callback = [&candidates](size_t offset) -> void {
|
|
candidates.insert(offset);
|
|
};
|
|
auto callback = [&candidates, &tmp_candidates](size_t offset) -> void {
|
|
if (candidates.find(offset) != candidates.end()) {
|
|
tmp_candidates.insert(offset);
|
|
}
|
|
};
|
|
auto execute_sub_batch =
|
|
[](Index* index_ptr,
|
|
const IndexInnerType& val,
|
|
const std::function<void(size_t /* offset */)>& callback) {
|
|
index_ptr->InApplyCallback(1, &val, callback);
|
|
};
|
|
|
|
// run in-filter.
|
|
for (size_t idx = 0; idx < elems.size(); idx++) {
|
|
if (idx == 0) {
|
|
ProcessIndexChunksV2<IndexInnerType>(
|
|
execute_sub_batch, elems[idx], first_callback);
|
|
} else {
|
|
ProcessIndexChunksV2<IndexInnerType>(
|
|
execute_sub_batch, elems[idx], callback);
|
|
candidates = std::move(tmp_candidates);
|
|
}
|
|
// the size of candidates is small enough.
|
|
if (candidates.size() * 100 < active_count_) {
|
|
break;
|
|
}
|
|
}
|
|
TargetBitmap res(active_count_);
|
|
// run post-filter. The filter will only be executed once in the framework.
|
|
for (const auto& candidate : candidates) {
|
|
res[candidate] = is_same(val, candidate);
|
|
}
|
|
return res;
|
|
});
|
|
AssertInfo(batch_res->size() == real_batch_size,
|
|
"internal error: expr processed rows {} not equal "
|
|
"expect batch size {}",
|
|
batch_res->size(),
|
|
real_batch_size);
|
|
|
|
// return the result.
|
|
return batch_res;
|
|
}
|
|
|
|
template <typename ExprValueType>
|
|
VectorPtr
|
|
PhyUnaryRangeFilterExpr::ExecRangeVisitorImplJson(EvalCtx& context) {
|
|
using GetType =
|
|
std::conditional_t<std::is_same_v<ExprValueType, std::string>,
|
|
std::string_view,
|
|
ExprValueType>;
|
|
auto* input = context.get_offset_input();
|
|
const auto& bitmap_input = context.get_bitmap_input();
|
|
FieldId field_id = expr_->column_.field_id_;
|
|
|
|
if (!has_offset_input_ &&
|
|
CanUseJsonStats(context, field_id, expr_->column_.nested_path_)) {
|
|
return ExecRangeVisitorImplJsonByStats<ExprValueType>();
|
|
}
|
|
|
|
auto real_batch_size =
|
|
has_offset_input_ ? input->size() : GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (!arg_inited_) {
|
|
value_arg_.SetValue<ExprValueType>(expr_->val_);
|
|
arg_inited_ = true;
|
|
}
|
|
auto res_vec =
|
|
std::make_shared<ColumnVector>(TargetBitmap(real_batch_size, false),
|
|
TargetBitmap(real_batch_size, true));
|
|
TargetBitmapView res(res_vec->GetRawData(), real_batch_size);
|
|
TargetBitmapView valid_res(res_vec->GetValidRawData(), real_batch_size);
|
|
|
|
ExprValueType val = value_arg_.GetValue<ExprValueType>();
|
|
auto op_type = expr_->op_type_;
|
|
auto pointer = milvus::Json::pointer(expr_->column_.nested_path_);
|
|
|
|
#define UnaryRangeJSONCompare(cmp) \
|
|
do { \
|
|
auto x = data[offset].template at<GetType>(pointer); \
|
|
if (x.error()) { \
|
|
if constexpr (std::is_same_v<GetType, int64_t>) { \
|
|
auto x = data[offset].template at<double>(pointer); \
|
|
res[i] = !x.error() && (cmp); \
|
|
break; \
|
|
} \
|
|
res[i] = false; \
|
|
break; \
|
|
} \
|
|
res[i] = (cmp); \
|
|
} while (false)
|
|
|
|
#define UnaryRangeJSONCompareNotEqual(cmp) \
|
|
do { \
|
|
auto x = data[offset].template at<GetType>(pointer); \
|
|
if (x.error()) { \
|
|
if constexpr (std::is_same_v<GetType, int64_t>) { \
|
|
auto x = data[offset].template at<double>(pointer); \
|
|
res[i] = x.error() || (cmp); \
|
|
break; \
|
|
} \
|
|
res[i] = true; \
|
|
break; \
|
|
} \
|
|
res[i] = (cmp); \
|
|
} while (false)
|
|
|
|
int processed_cursor = 0;
|
|
auto execute_sub_batch =
|
|
[ op_type, pointer, &processed_cursor, &
|
|
bitmap_input ]<FilterType filter_type = FilterType::sequential>(
|
|
const milvus::Json* data,
|
|
const bool* valid_data,
|
|
const int32_t* offsets,
|
|
const int size,
|
|
TargetBitmapView res,
|
|
TargetBitmapView valid_res,
|
|
ExprValueType val) {
|
|
bool has_bitmap_input = !bitmap_input.empty();
|
|
switch (op_type) {
|
|
case proto::plan::GreaterThan: {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
auto offset = i;
|
|
if constexpr (filter_type == FilterType::random) {
|
|
offset = (offsets) ? offsets[i] : i;
|
|
}
|
|
if (valid_data != nullptr && !valid_data[offset]) {
|
|
res[i] = valid_res[i] = false;
|
|
continue;
|
|
}
|
|
if (has_bitmap_input &&
|
|
!bitmap_input[i + processed_cursor]) {
|
|
continue;
|
|
}
|
|
if constexpr (std::is_same_v<GetType, proto::plan::Array>) {
|
|
res[i] = false;
|
|
} else {
|
|
UnaryRangeJSONCompare(x.value() > val);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case proto::plan::GreaterEqual: {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
auto offset = i;
|
|
if constexpr (filter_type == FilterType::random) {
|
|
offset = (offsets) ? offsets[i] : i;
|
|
}
|
|
if (valid_data != nullptr && !valid_data[offset]) {
|
|
res[i] = valid_res[i] = false;
|
|
continue;
|
|
}
|
|
if (has_bitmap_input &&
|
|
!bitmap_input[i + processed_cursor]) {
|
|
continue;
|
|
}
|
|
if constexpr (std::is_same_v<GetType, proto::plan::Array>) {
|
|
res[i] = false;
|
|
} else {
|
|
UnaryRangeJSONCompare(x.value() >= val);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case proto::plan::LessThan: {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
auto offset = i;
|
|
if constexpr (filter_type == FilterType::random) {
|
|
offset = (offsets) ? offsets[i] : i;
|
|
}
|
|
if (valid_data != nullptr && !valid_data[offset]) {
|
|
res[i] = valid_res[i] = false;
|
|
continue;
|
|
}
|
|
if (has_bitmap_input &&
|
|
!bitmap_input[i + processed_cursor]) {
|
|
continue;
|
|
}
|
|
if constexpr (std::is_same_v<GetType, proto::plan::Array>) {
|
|
res[i] = false;
|
|
} else {
|
|
UnaryRangeJSONCompare(x.value() < val);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case proto::plan::LessEqual: {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
auto offset = i;
|
|
if constexpr (filter_type == FilterType::random) {
|
|
offset = (offsets) ? offsets[i] : i;
|
|
}
|
|
if (valid_data != nullptr && !valid_data[offset]) {
|
|
res[i] = valid_res[i] = false;
|
|
continue;
|
|
}
|
|
if (has_bitmap_input &&
|
|
!bitmap_input[i + processed_cursor]) {
|
|
continue;
|
|
}
|
|
if constexpr (std::is_same_v<GetType, proto::plan::Array>) {
|
|
res[i] = false;
|
|
} else {
|
|
UnaryRangeJSONCompare(x.value() <= val);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case proto::plan::Equal: {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
auto offset = i;
|
|
if constexpr (filter_type == FilterType::random) {
|
|
offset = (offsets) ? offsets[i] : i;
|
|
}
|
|
if (valid_data != nullptr && !valid_data[offset]) {
|
|
res[i] = valid_res[i] = false;
|
|
continue;
|
|
}
|
|
if (has_bitmap_input &&
|
|
!bitmap_input[i + processed_cursor]) {
|
|
continue;
|
|
}
|
|
if constexpr (std::is_same_v<GetType, proto::plan::Array>) {
|
|
auto doc = data[i].doc();
|
|
auto array = doc.at_pointer(pointer).get_array();
|
|
if (array.error()) {
|
|
res[i] = false;
|
|
continue;
|
|
}
|
|
res[i] = CompareTwoJsonArray(array, val);
|
|
} else {
|
|
UnaryRangeJSONCompare(x.value() == val);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case proto::plan::NotEqual: {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
auto offset = i;
|
|
if constexpr (filter_type == FilterType::random) {
|
|
offset = (offsets) ? offsets[i] : i;
|
|
}
|
|
if (valid_data != nullptr && !valid_data[offset]) {
|
|
valid_res[i] = false;
|
|
res[i] = true;
|
|
continue;
|
|
}
|
|
if (has_bitmap_input &&
|
|
!bitmap_input[i + processed_cursor]) {
|
|
continue;
|
|
}
|
|
if constexpr (std::is_same_v<GetType, proto::plan::Array>) {
|
|
auto doc = data[i].doc();
|
|
auto array = doc.at_pointer(pointer).get_array();
|
|
if (array.error()) {
|
|
res[i] = false;
|
|
continue;
|
|
}
|
|
res[i] = !CompareTwoJsonArray(array, val);
|
|
} else {
|
|
UnaryRangeJSONCompareNotEqual(x.value() != val);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case proto::plan::InnerMatch:
|
|
case proto::plan::PostfixMatch:
|
|
case proto::plan::PrefixMatch: {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
auto offset = i;
|
|
if constexpr (filter_type == FilterType::random) {
|
|
offset = (offsets) ? offsets[i] : i;
|
|
}
|
|
if (valid_data != nullptr && !valid_data[offset]) {
|
|
res[i] = valid_res[i] = false;
|
|
continue;
|
|
}
|
|
if (has_bitmap_input &&
|
|
!bitmap_input[i + processed_cursor]) {
|
|
continue;
|
|
}
|
|
if constexpr (std::is_same_v<GetType, proto::plan::Array>) {
|
|
res[i] = false;
|
|
} else {
|
|
UnaryRangeJSONCompare(milvus::query::Match(
|
|
ExprValueType(x.value()), val, op_type));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case proto::plan::Match: {
|
|
PatternMatchTranslator translator;
|
|
auto regex_pattern = translator(val);
|
|
RegexMatcher matcher(regex_pattern);
|
|
for (size_t i = 0; i < size; ++i) {
|
|
auto offset = i;
|
|
if constexpr (filter_type == FilterType::random) {
|
|
offset = (offsets) ? offsets[i] : i;
|
|
}
|
|
if (valid_data != nullptr && !valid_data[offset]) {
|
|
res[i] = valid_res[i] = false;
|
|
continue;
|
|
}
|
|
if (has_bitmap_input &&
|
|
!bitmap_input[i + processed_cursor]) {
|
|
continue;
|
|
}
|
|
if constexpr (std::is_same_v<GetType, proto::plan::Array>) {
|
|
res[i] = false;
|
|
} else {
|
|
UnaryRangeJSONCompare(
|
|
matcher(ExprValueType(x.value())));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
ThrowInfo(
|
|
OpTypeInvalid,
|
|
fmt::format("unsupported operator type for unary expr: {}",
|
|
op_type));
|
|
}
|
|
processed_cursor += size;
|
|
};
|
|
int64_t processed_size;
|
|
if (has_offset_input_) {
|
|
processed_size = ProcessDataByOffsets<milvus::Json>(
|
|
execute_sub_batch, std::nullptr_t{}, input, res, valid_res, val);
|
|
|
|
} else {
|
|
processed_size = ProcessDataChunks<milvus::Json>(
|
|
execute_sub_batch, std::nullptr_t{}, res, valid_res, val);
|
|
}
|
|
AssertInfo(processed_size == real_batch_size,
|
|
"internal error: expr processed rows {} not equal "
|
|
"expect batch size {}",
|
|
processed_size,
|
|
real_batch_size);
|
|
return res_vec;
|
|
}
|
|
|
|
std::pair<std::string, std::string>
|
|
PhyUnaryRangeFilterExpr::SplitAtFirstSlashDigit(std::string input) {
|
|
boost::regex rgx("/\\d+");
|
|
boost::smatch match;
|
|
if (boost::regex_search(input, match, rgx)) {
|
|
std::string firstPart = input.substr(0, match.position());
|
|
std::string secondPart = input.substr(match.position());
|
|
return {firstPart, secondPart};
|
|
} else {
|
|
return {input, ""};
|
|
}
|
|
}
|
|
|
|
template <typename ExprValueType>
|
|
VectorPtr
|
|
PhyUnaryRangeFilterExpr::ExecRangeVisitorImplJsonByStats() {
|
|
using GetType =
|
|
std::conditional_t<std::is_same_v<ExprValueType, std::string>,
|
|
std::string_view,
|
|
ExprValueType>;
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (cached_index_chunk_id_ != 0 &&
|
|
segment_->type() == SegmentType::Sealed) {
|
|
auto pointerpath = milvus::Json::pointer(expr_->column_.nested_path_);
|
|
auto pointerpair = SplitAtFirstSlashDigit(pointerpath);
|
|
std::string pointer = pointerpair.first;
|
|
size_t array_index = pointerpair.second.empty()
|
|
? INVALID_ARRAY_INDEX
|
|
: std::stoi(pointerpair.second);
|
|
|
|
ExprValueType val = GetValueFromProto<ExprValueType>(expr_->val_);
|
|
// for NotEqual: compute Equal and flip the result
|
|
// this avoids handling NULL values differently in multiple places
|
|
auto op_type = (expr_->op_type_ == proto::plan::OpType::NotEqual)
|
|
? proto::plan::OpType::Equal
|
|
: expr_->op_type_;
|
|
|
|
auto segment = static_cast<const segcore::SegmentSealed*>(segment_);
|
|
auto field_id = expr_->column_.field_id_;
|
|
auto index = segment->GetJsonStats(op_ctx_, field_id);
|
|
Assert(index.get() != nullptr);
|
|
cached_index_chunk_res_ =
|
|
(op_type == proto::plan::OpType::NotEqual)
|
|
? std::make_shared<TargetBitmap>(active_count_, true)
|
|
: std::make_shared<TargetBitmap>(active_count_);
|
|
cached_index_chunk_valid_res_ =
|
|
std::make_shared<TargetBitmap>(active_count_, true);
|
|
TargetBitmapView res_view(*cached_index_chunk_res_);
|
|
TargetBitmapView valid_res_view(*cached_index_chunk_valid_res_);
|
|
|
|
// process shredding data
|
|
auto try_execute = [&](milvus::index::JSONType json_type,
|
|
TargetBitmapView& res_view,
|
|
TargetBitmapView& valid_res_view,
|
|
auto GetType,
|
|
auto ValType) {
|
|
auto target_field = index->GetShreddingField(pointer, json_type);
|
|
if (!target_field.empty()) {
|
|
using ColType = decltype(GetType);
|
|
using ValType = decltype(ValType);
|
|
ShreddingExecutor<ColType, ValType> executor(
|
|
op_type, pointer, val);
|
|
index->ExecutorForShreddingData<ColType>(op_ctx_,
|
|
target_field,
|
|
executor,
|
|
nullptr,
|
|
res_view,
|
|
valid_res_view);
|
|
LOG_DEBUG(
|
|
"using shredding data's field: {} with value {}, count {} "
|
|
"for segment {}",
|
|
target_field,
|
|
val,
|
|
res_view.count(),
|
|
segment_->get_segment_id());
|
|
}
|
|
};
|
|
|
|
{
|
|
milvus::ScopedTimer timer(
|
|
"unary_json_stats_shredding_data", [](double ms) {
|
|
milvus::monitor::internal_json_stats_latency_shredding
|
|
.Observe(ms);
|
|
});
|
|
|
|
if constexpr (std::is_same_v<GetType, bool>) {
|
|
try_execute(milvus::index::JSONType::BOOL,
|
|
res_view,
|
|
valid_res_view,
|
|
bool{},
|
|
bool{});
|
|
} else if constexpr (std::is_same_v<GetType, int64_t>) {
|
|
try_execute(milvus::index::JSONType::INT64,
|
|
res_view,
|
|
valid_res_view,
|
|
int64_t{},
|
|
int64_t{});
|
|
|
|
// and double compare
|
|
TargetBitmap res_double(active_count_, false);
|
|
TargetBitmapView res_double_view(res_double);
|
|
TargetBitmap res_double_valid(active_count_, true);
|
|
TargetBitmapView valid_res_double_view(res_double_valid);
|
|
try_execute(milvus::index::JSONType::DOUBLE,
|
|
res_double_view,
|
|
valid_res_double_view,
|
|
double{},
|
|
int64_t{});
|
|
res_view.inplace_or_with_count(res_double_view, active_count_);
|
|
valid_res_view.inplace_or_with_count(valid_res_double_view,
|
|
active_count_);
|
|
} else if constexpr (std::is_same_v<GetType, double>) {
|
|
try_execute(milvus::index::JSONType::DOUBLE,
|
|
res_view,
|
|
valid_res_view,
|
|
double{},
|
|
double{});
|
|
|
|
// add int64 compare
|
|
TargetBitmap res_int64(active_count_, false);
|
|
TargetBitmapView res_int64_view(res_int64);
|
|
TargetBitmap res_int64_valid(active_count_, true);
|
|
TargetBitmapView valid_res_int64_view(res_int64_valid);
|
|
try_execute(milvus::index::JSONType::INT64,
|
|
res_int64_view,
|
|
valid_res_int64_view,
|
|
int64_t{},
|
|
double{});
|
|
res_view.inplace_or_with_count(res_int64_view, active_count_);
|
|
valid_res_view.inplace_or_with_count(valid_res_int64_view,
|
|
active_count_);
|
|
} else if constexpr (std::is_same_v<GetType, std::string> ||
|
|
std::is_same_v<GetType, std::string_view>) {
|
|
try_execute(milvus::index::JSONType::STRING,
|
|
res_view,
|
|
valid_res_view,
|
|
GetType{},
|
|
GetType{});
|
|
} else if constexpr (std::is_same_v<GetType, proto::plan::Array>) {
|
|
// ARRAY shredding data: stored as BSON binary in binary column
|
|
auto target_field = index->GetShreddingField(
|
|
pointer, milvus::index::JSONType::ARRAY);
|
|
if (!target_field.empty()) {
|
|
ShreddingArrayBsonExecutor executor(op_type, pointer, val);
|
|
index->ExecutorForShreddingData<std::string_view>(
|
|
op_ctx_,
|
|
target_field,
|
|
executor,
|
|
nullptr,
|
|
res_view,
|
|
valid_res_view);
|
|
LOG_DEBUG("using shredding array field: {}, count {}",
|
|
target_field,
|
|
res_view.count());
|
|
}
|
|
}
|
|
}
|
|
|
|
// process shared data
|
|
auto shared_executor = [op_type, val, array_index, &res_view](
|
|
milvus::BsonView bson,
|
|
uint32_t row_id,
|
|
uint32_t value_offset) {
|
|
if constexpr (std::is_same_v<GetType, proto::plan::Array>) {
|
|
Assert(op_type == proto::plan::OpType::Equal ||
|
|
op_type == proto::plan::OpType::NotEqual);
|
|
if (array_index != INVALID_ARRAY_INDEX) {
|
|
auto array_value = bson.ParseAsArrayAtOffset(value_offset);
|
|
if (!array_value.has_value()) {
|
|
// For NotEqual: path not exists means "not equal", keep true
|
|
// For Equal: path not exists means no match, set false
|
|
res_view[row_id] =
|
|
(op_type == proto::plan::OpType::NotEqual);
|
|
return;
|
|
}
|
|
auto sub_array = milvus::BsonView::GetNthElementInArray<
|
|
bsoncxx::array::view>(array_value.value().data(),
|
|
array_index);
|
|
if (!sub_array.has_value()) {
|
|
res_view[row_id] =
|
|
(op_type == proto::plan::OpType::NotEqual);
|
|
return;
|
|
}
|
|
res_view[row_id] =
|
|
op_type == proto::plan::OpType::Equal
|
|
? CompareTwoJsonArray(sub_array.value(), val)
|
|
: !CompareTwoJsonArray(sub_array.value(), val);
|
|
} else {
|
|
auto array_value = bson.ParseAsArrayAtOffset(value_offset);
|
|
if (!array_value.has_value()) {
|
|
res_view[row_id] =
|
|
(op_type == proto::plan::OpType::NotEqual);
|
|
return;
|
|
}
|
|
res_view[row_id] =
|
|
op_type == proto::plan::OpType::Equal
|
|
? CompareTwoJsonArray(array_value.value(), val)
|
|
: !CompareTwoJsonArray(array_value.value(), val);
|
|
}
|
|
} else {
|
|
std::optional<GetType> get_value;
|
|
if (array_index != INVALID_ARRAY_INDEX) {
|
|
auto array_value = bson.ParseAsArrayAtOffset(value_offset);
|
|
if (!array_value.has_value()) {
|
|
// Path not exists: NotEqual->true, others->false
|
|
res_view[row_id] =
|
|
(op_type == proto::plan::OpType::NotEqual);
|
|
return;
|
|
}
|
|
get_value = milvus::BsonView::GetNthElementInArray<GetType>(
|
|
array_value.value().data(), array_index);
|
|
// If GetType is int and value is not found, try double
|
|
if constexpr (std::is_same_v<GetType, int64_t>) {
|
|
if (!get_value.has_value()) {
|
|
auto get_value =
|
|
milvus::BsonView::GetNthElementInArray<double>(
|
|
array_value.value().data(), array_index);
|
|
if (get_value.has_value()) {
|
|
res_view[row_id] = UnaryCompare(
|
|
get_value.value(), val, op_type);
|
|
} else {
|
|
// Type mismatch: NotEqual->true, others->false
|
|
res_view[row_id] =
|
|
(op_type == proto::plan::OpType::NotEqual);
|
|
}
|
|
return;
|
|
}
|
|
} else if constexpr (std::is_same_v<GetType, double>) {
|
|
if (!get_value.has_value()) {
|
|
auto get_value =
|
|
milvus::BsonView::GetNthElementInArray<int64_t>(
|
|
array_value.value().data(), array_index);
|
|
if (get_value.has_value()) {
|
|
res_view[row_id] = UnaryCompare(
|
|
get_value.value(), val, op_type);
|
|
} else {
|
|
res_view[row_id] =
|
|
(op_type == proto::plan::OpType::NotEqual);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
get_value =
|
|
bson.ParseAsValueAtOffset<GetType>(value_offset);
|
|
// If GetType is int and value is not found, try double
|
|
if constexpr (std::is_same_v<GetType, int64_t>) {
|
|
if (!get_value.has_value()) {
|
|
auto get_value =
|
|
bson.ParseAsValueAtOffset<double>(value_offset);
|
|
if (get_value.has_value()) {
|
|
res_view[row_id] = UnaryCompare(
|
|
get_value.value(), val, op_type);
|
|
} else {
|
|
res_view[row_id] =
|
|
(op_type == proto::plan::OpType::NotEqual);
|
|
}
|
|
return;
|
|
}
|
|
} else if constexpr (std::is_same_v<GetType, double>) {
|
|
if (!get_value.has_value()) {
|
|
auto get_value = bson.ParseAsValueAtOffset<int64_t>(
|
|
value_offset);
|
|
if (get_value.has_value()) {
|
|
res_view[row_id] = UnaryCompare(
|
|
get_value.value(), val, op_type);
|
|
} else {
|
|
res_view[row_id] =
|
|
(op_type == proto::plan::OpType::NotEqual);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
if (!get_value.has_value()) {
|
|
res_view[row_id] =
|
|
(op_type == proto::plan::OpType::NotEqual);
|
|
return;
|
|
}
|
|
res_view[row_id] =
|
|
UnaryCompare(get_value.value(), val, op_type);
|
|
}
|
|
};
|
|
|
|
std::set<milvus::index::JSONType> target_types;
|
|
if constexpr (std::is_same_v<GetType, std::string>) {
|
|
target_types.insert(milvus::index::JSONType::STRING);
|
|
} else if constexpr (std::is_same_v<GetType, int64_t> ||
|
|
std::is_same_v<GetType, double>) {
|
|
target_types.insert(milvus::index::JSONType::INT64);
|
|
target_types.insert(milvus::index::JSONType::DOUBLE);
|
|
} else if constexpr (std::is_same_v<GetType, bool>) {
|
|
target_types.insert(milvus::index::JSONType::BOOL);
|
|
}
|
|
|
|
{
|
|
milvus::ScopedTimer timer(
|
|
"unary_json_stats_shared_data", [](double ms) {
|
|
milvus::monitor::internal_json_stats_latency_shared.Observe(
|
|
ms);
|
|
});
|
|
|
|
index->ExecuteForSharedData(
|
|
op_ctx_, bson_index_, pointer, shared_executor);
|
|
}
|
|
|
|
// for NotEqual: flip the result
|
|
if (expr_->op_type_ == proto::plan::OpType::NotEqual) {
|
|
cached_index_chunk_res_->flip();
|
|
}
|
|
cached_index_chunk_id_ = 0;
|
|
}
|
|
|
|
TargetBitmap result;
|
|
result.append(
|
|
*cached_index_chunk_res_, current_data_global_pos_, real_batch_size);
|
|
MoveCursor();
|
|
return std::make_shared<ColumnVector>(std::move(result),
|
|
TargetBitmap(real_batch_size, true));
|
|
}
|
|
|
|
template <typename T>
|
|
VectorPtr
|
|
PhyUnaryRangeFilterExpr::ExecRangeVisitorImpl(EvalCtx& context) {
|
|
if (expr_->op_type_ == proto::plan::OpType::TextMatch ||
|
|
expr_->op_type_ == proto::plan::OpType::PhraseMatch) {
|
|
if (has_offset_input_) {
|
|
ThrowInfo(
|
|
OpTypeInvalid,
|
|
fmt::format("match query does not support iterative filter"));
|
|
}
|
|
return ExecTextMatch();
|
|
} else if (CanUseNgramIndex()) {
|
|
auto res = ExecNgramMatch();
|
|
// If nullopt is returned, it means the query cannot be
|
|
// optimized by ngram index. Forward it to the normal path.
|
|
if (res.has_value()) {
|
|
return res.value();
|
|
}
|
|
}
|
|
|
|
if (!has_offset_input_ && is_pk_field_ && IsCompareOp(expr_->op_type_)) {
|
|
if (pk_type_ == DataType::VARCHAR) {
|
|
return ExecRangeVisitorImplForPk<std::string_view>(context);
|
|
} else {
|
|
return ExecRangeVisitorImplForPk<int64_t>(context);
|
|
}
|
|
}
|
|
|
|
if (CanUseIndex<T>() && !has_offset_input_) {
|
|
return ExecRangeVisitorImplForIndex<T>();
|
|
} else {
|
|
return ExecRangeVisitorImplForData<T>(context);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
VectorPtr
|
|
PhyUnaryRangeFilterExpr::ExecRangeVisitorImplForPk(EvalCtx& context) {
|
|
typedef std::
|
|
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
|
|
IndexInnerType;
|
|
|
|
if (!arg_inited_) {
|
|
value_arg_.SetValue<IndexInnerType>(expr_->val_);
|
|
arg_inited_ = true;
|
|
}
|
|
if (auto res = PreCheckOverflow<T>()) {
|
|
return res;
|
|
}
|
|
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (cached_index_chunk_id_ != 0) {
|
|
cached_index_chunk_id_ = 0;
|
|
cached_index_chunk_res_ = std::make_shared<TargetBitmap>(active_count_);
|
|
auto cache_view = cached_index_chunk_res_->view();
|
|
|
|
auto op_type = expr_->op_type_;
|
|
PkType pk = value_arg_.GetValue<IndexInnerType>();
|
|
if (op_type == proto::plan::NotEqual) {
|
|
segment_->pk_range(op_ctx_, proto::plan::Equal, pk, cache_view);
|
|
cache_view.flip();
|
|
} else {
|
|
segment_->pk_range(op_ctx_, op_type, pk, cache_view);
|
|
}
|
|
}
|
|
|
|
TargetBitmap result;
|
|
result.append(
|
|
*cached_index_chunk_res_, current_data_global_pos_, real_batch_size);
|
|
MoveCursor();
|
|
return std::make_shared<ColumnVector>(std::move(result),
|
|
TargetBitmap(real_batch_size, true));
|
|
}
|
|
|
|
template <typename T>
|
|
VectorPtr
|
|
PhyUnaryRangeFilterExpr::ExecRangeVisitorImplForIndex() {
|
|
typedef std::
|
|
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
|
|
IndexInnerType;
|
|
using Index = index::ScalarIndex<IndexInnerType>;
|
|
if (!arg_inited_) {
|
|
value_arg_.SetValue<IndexInnerType>(expr_->val_);
|
|
arg_inited_ = true;
|
|
}
|
|
if (auto res = PreCheckOverflow<T>()) {
|
|
return res;
|
|
}
|
|
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
auto op_type = expr_->op_type_;
|
|
auto execute_sub_batch = [op_type](Index* index_ptr, IndexInnerType val) {
|
|
TargetBitmap res;
|
|
switch (op_type) {
|
|
case proto::plan::GreaterThan: {
|
|
UnaryIndexFunc<T, proto::plan::GreaterThan> func;
|
|
res = std::move(func(index_ptr, val));
|
|
break;
|
|
}
|
|
case proto::plan::GreaterEqual: {
|
|
UnaryIndexFunc<T, proto::plan::GreaterEqual> func;
|
|
res = std::move(func(index_ptr, val));
|
|
break;
|
|
}
|
|
case proto::plan::LessThan: {
|
|
UnaryIndexFunc<T, proto::plan::LessThan> func;
|
|
res = std::move(func(index_ptr, val));
|
|
break;
|
|
}
|
|
case proto::plan::LessEqual: {
|
|
UnaryIndexFunc<T, proto::plan::LessEqual> func;
|
|
res = std::move(func(index_ptr, val));
|
|
break;
|
|
}
|
|
case proto::plan::Equal: {
|
|
UnaryIndexFunc<T, proto::plan::Equal> func;
|
|
res = std::move(func(index_ptr, val));
|
|
break;
|
|
}
|
|
case proto::plan::NotEqual: {
|
|
UnaryIndexFunc<T, proto::plan::NotEqual> func;
|
|
res = std::move(func(index_ptr, val));
|
|
break;
|
|
}
|
|
case proto::plan::PrefixMatch: {
|
|
UnaryIndexFunc<T, proto::plan::PrefixMatch> func;
|
|
res = std::move(func(index_ptr, val));
|
|
break;
|
|
}
|
|
case proto::plan::PostfixMatch: {
|
|
UnaryIndexFunc<T, proto::plan::PostfixMatch> func;
|
|
res = std::move(func(index_ptr, val));
|
|
break;
|
|
}
|
|
case proto::plan::InnerMatch: {
|
|
UnaryIndexFunc<T, proto::plan::InnerMatch> func;
|
|
res = std::move(func(index_ptr, val));
|
|
break;
|
|
}
|
|
case proto::plan::Match: {
|
|
UnaryIndexFunc<T, proto::plan::Match> func;
|
|
res = std::move(func(index_ptr, val));
|
|
break;
|
|
}
|
|
default:
|
|
ThrowInfo(
|
|
OpTypeInvalid,
|
|
fmt::format("unsupported operator type for unary expr: {}",
|
|
op_type));
|
|
}
|
|
return res;
|
|
};
|
|
IndexInnerType val = value_arg_.GetValue<IndexInnerType>();
|
|
auto res = ProcessIndexChunks<T>(execute_sub_batch, val);
|
|
AssertInfo(res->size() == real_batch_size,
|
|
"internal error: expr processed rows {} not equal "
|
|
"expect batch size {}",
|
|
res->size(),
|
|
real_batch_size);
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
ColumnVectorPtr
|
|
PhyUnaryRangeFilterExpr::PreCheckOverflow(OffsetVector* input) {
|
|
if constexpr (std::is_integral_v<T> && !std::is_same_v<T, bool>) {
|
|
auto val = GetValueFromProto<int64_t>(expr_->val_);
|
|
|
|
if (milvus::query::out_of_range<T>(val)) {
|
|
int64_t batch_size;
|
|
if (input != nullptr) {
|
|
batch_size = input->size();
|
|
} else {
|
|
batch_size = overflow_check_pos_ + batch_size_ >= active_count_
|
|
? active_count_ - overflow_check_pos_
|
|
: batch_size_;
|
|
overflow_check_pos_ += batch_size;
|
|
}
|
|
auto valid =
|
|
(input != nullptr)
|
|
? ProcessChunksForValidByOffsets<T>(
|
|
SegmentExpr::CanUseIndex(), *input)
|
|
: ProcessChunksForValid<T>(SegmentExpr::CanUseIndex());
|
|
auto res_vec = std::make_shared<ColumnVector>(
|
|
TargetBitmap(batch_size), std::move(valid));
|
|
TargetBitmapView res(res_vec->GetRawData(), batch_size);
|
|
TargetBitmapView valid_res(res_vec->GetValidRawData(), batch_size);
|
|
switch (expr_->op_type_) {
|
|
case proto::plan::GreaterThan:
|
|
case proto::plan::GreaterEqual: {
|
|
if (milvus::query::lt_lb<T>(val)) {
|
|
res.set();
|
|
res &= valid_res;
|
|
return res_vec;
|
|
}
|
|
return res_vec;
|
|
}
|
|
case proto::plan::LessThan:
|
|
case proto::plan::LessEqual: {
|
|
if (milvus::query::gt_ub<T>(val)) {
|
|
res.set();
|
|
res &= valid_res;
|
|
return res_vec;
|
|
}
|
|
return res_vec;
|
|
}
|
|
case proto::plan::Equal: {
|
|
res.reset();
|
|
return res_vec;
|
|
}
|
|
case proto::plan::NotEqual: {
|
|
res.set();
|
|
res &= valid_res;
|
|
return res_vec;
|
|
}
|
|
default: {
|
|
ThrowInfo(OpTypeInvalid,
|
|
"unsupported range node {}",
|
|
expr_->op_type_);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename T>
|
|
VectorPtr
|
|
PhyUnaryRangeFilterExpr::ExecRangeVisitorImplForData(EvalCtx& context) {
|
|
typedef std::
|
|
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
|
|
IndexInnerType;
|
|
auto* input = context.get_offset_input();
|
|
const auto& bitmap_input = context.get_bitmap_input();
|
|
|
|
if (auto res = PreCheckOverflow<T>(input)) {
|
|
return res;
|
|
}
|
|
|
|
auto real_batch_size =
|
|
has_offset_input_ ? input->size() : GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (!arg_inited_) {
|
|
value_arg_.SetValue<IndexInnerType>(expr_->val_);
|
|
arg_inited_ = true;
|
|
}
|
|
IndexInnerType val = GetValueFromProto<IndexInnerType>(expr_->val_);
|
|
auto res_vec =
|
|
std::make_shared<ColumnVector>(TargetBitmap(real_batch_size, false),
|
|
TargetBitmap(real_batch_size, true));
|
|
TargetBitmapView res(res_vec->GetRawData(), real_batch_size);
|
|
TargetBitmapView valid_res(res_vec->GetValidRawData(), real_batch_size);
|
|
auto expr_type = expr_->op_type_;
|
|
|
|
size_t processed_cursor = 0;
|
|
auto execute_sub_batch =
|
|
[ expr_type, &processed_cursor, &
|
|
bitmap_input ]<FilterType filter_type = FilterType::sequential>(
|
|
const T* data,
|
|
const bool* valid_data,
|
|
const int32_t* offsets,
|
|
const int size,
|
|
TargetBitmapView res,
|
|
TargetBitmapView valid_res,
|
|
IndexInnerType val) {
|
|
// If data is nullptr, this chunk was skipped by SkipIndex.
|
|
// We only need to update processed_cursor for bitmap_input indexing.
|
|
if (data == nullptr) {
|
|
processed_cursor += size;
|
|
return;
|
|
}
|
|
switch (expr_type) {
|
|
case proto::plan::GreaterThan: {
|
|
UnaryElementFunc<T, proto::plan::GreaterThan, filter_type> func;
|
|
func(data,
|
|
size,
|
|
val,
|
|
res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::GreaterEqual: {
|
|
UnaryElementFunc<T, proto::plan::GreaterEqual, filter_type>
|
|
func;
|
|
func(data,
|
|
size,
|
|
val,
|
|
res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::LessThan: {
|
|
UnaryElementFunc<T, proto::plan::LessThan, filter_type> func;
|
|
func(data,
|
|
size,
|
|
val,
|
|
res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::LessEqual: {
|
|
UnaryElementFunc<T, proto::plan::LessEqual, filter_type> func;
|
|
func(data,
|
|
size,
|
|
val,
|
|
res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::Equal: {
|
|
UnaryElementFunc<T, proto::plan::Equal, filter_type> func;
|
|
func(data,
|
|
size,
|
|
val,
|
|
res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::NotEqual: {
|
|
UnaryElementFunc<T, proto::plan::NotEqual, filter_type> func;
|
|
func(data,
|
|
size,
|
|
val,
|
|
res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::PrefixMatch: {
|
|
UnaryElementFunc<T, proto::plan::PrefixMatch, filter_type> func;
|
|
func(data,
|
|
size,
|
|
val,
|
|
res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::PostfixMatch: {
|
|
UnaryElementFunc<T, proto::plan::PostfixMatch, filter_type>
|
|
func;
|
|
func(data,
|
|
size,
|
|
val,
|
|
res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::InnerMatch: {
|
|
UnaryElementFunc<T, proto::plan::InnerMatch, filter_type> func;
|
|
func(data,
|
|
size,
|
|
val,
|
|
res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
case proto::plan::Match: {
|
|
UnaryElementFunc<T, proto::plan::Match, filter_type> func;
|
|
func(data,
|
|
size,
|
|
val,
|
|
res,
|
|
bitmap_input,
|
|
processed_cursor,
|
|
offsets);
|
|
break;
|
|
}
|
|
default:
|
|
ThrowInfo(
|
|
OpTypeInvalid,
|
|
fmt::format("unsupported operator type for unary expr: {}",
|
|
expr_type));
|
|
}
|
|
// there is a batch operation in BinaryRangeElementFunc,
|
|
// so not divide data again for the reason that it may reduce performance if the null distribution is scattered
|
|
// but to mask res with valid_data after the batch operation.
|
|
if (valid_data != nullptr) {
|
|
bool has_bitmap_input = !bitmap_input.empty();
|
|
for (int i = 0; i < size; i++) {
|
|
if (has_bitmap_input && !bitmap_input[i + processed_cursor]) {
|
|
continue;
|
|
}
|
|
auto offset = i;
|
|
if constexpr (filter_type == FilterType::random) {
|
|
offset = (offsets) ? offsets[i] : i;
|
|
}
|
|
if (!valid_data[offset]) {
|
|
res[i] = valid_res[i] = false;
|
|
}
|
|
}
|
|
}
|
|
processed_cursor += size;
|
|
};
|
|
|
|
auto skip_index_func = [expr_type, val](const SkipIndex& skip_index,
|
|
FieldId field_id,
|
|
int64_t chunk_id) {
|
|
return skip_index.CanSkipUnaryRange<T>(
|
|
field_id, chunk_id, expr_type, val);
|
|
};
|
|
|
|
int64_t processed_size;
|
|
if (has_offset_input_) {
|
|
if (expr_->column_.element_level_) {
|
|
// For element-level filtering
|
|
processed_size = ProcessElementLevelByOffsets<T>(
|
|
execute_sub_batch, skip_index_func, input, res, valid_res, val);
|
|
} else {
|
|
processed_size = ProcessDataByOffsets<T>(
|
|
execute_sub_batch, skip_index_func, input, res, valid_res, val);
|
|
}
|
|
} else {
|
|
AssertInfo(!expr_->column_.element_level_,
|
|
"Element-level filtering is not supported without offsets");
|
|
processed_size = ProcessDataChunks<T>(
|
|
execute_sub_batch, skip_index_func, res, valid_res, val);
|
|
}
|
|
AssertInfo(processed_size == real_batch_size,
|
|
"internal error: expr processed rows {} not equal "
|
|
"expect batch size {}, related params[active_count:{}, "
|
|
"current_data_chunk:{}, num_data_chunk:{}, current_data_pos:{}]",
|
|
processed_size,
|
|
real_batch_size,
|
|
active_count_,
|
|
current_data_chunk_,
|
|
num_data_chunk_,
|
|
current_data_chunk_pos_);
|
|
return res_vec;
|
|
}
|
|
|
|
template <typename T>
|
|
bool
|
|
PhyUnaryRangeFilterExpr::CanUseIndex() {
|
|
use_index_ = SegmentExpr::CanUseIndex() &&
|
|
SegmentExpr::CanUseIndexForOp<T>(expr_->op_type_);
|
|
return use_index_;
|
|
}
|
|
|
|
bool
|
|
PhyUnaryRangeFilterExpr::CanUseIndexForJson(DataType val_type) {
|
|
if (!SegmentExpr::CanUseIndex()) {
|
|
use_index_ = false;
|
|
return false;
|
|
}
|
|
bool has_index = pinned_index_.size() > 0;
|
|
switch (val_type) {
|
|
case DataType::STRING:
|
|
case DataType::VARCHAR:
|
|
use_index_ = has_index &&
|
|
expr_->op_type_ != proto::plan::OpType::Match &&
|
|
expr_->op_type_ != proto::plan::OpType::PostfixMatch &&
|
|
expr_->op_type_ != proto::plan::OpType::InnerMatch;
|
|
break;
|
|
default:
|
|
use_index_ = has_index;
|
|
}
|
|
return use_index_;
|
|
}
|
|
|
|
VectorPtr
|
|
PhyUnaryRangeFilterExpr::ExecTextMatch() {
|
|
using Index = index::TextMatchIndex;
|
|
if (!arg_inited_) {
|
|
value_arg_.SetValue<std::string>(expr_->val_);
|
|
arg_inited_ = true;
|
|
}
|
|
auto query = value_arg_.GetValue<std::string>();
|
|
|
|
int64_t slop = 0;
|
|
if (expr_->op_type_ == proto::plan::PhraseMatch) {
|
|
// It should be larger than 0 in normal cases. Check it incase of receiving old version proto.
|
|
if (expr_->extra_values_.size() > 0) {
|
|
slop = GetValueFromProto<int64_t>(expr_->extra_values_[0]);
|
|
}
|
|
if (slop < 0 || slop > std::numeric_limits<uint32_t>::max()) {
|
|
throw SegcoreError(
|
|
ErrorCode::InvalidParameter,
|
|
fmt::format(
|
|
"Slop {} is invalid in phrase match query. Should be "
|
|
"within [0, UINT32_MAX].",
|
|
slop));
|
|
}
|
|
}
|
|
auto op_type = expr_->op_type_;
|
|
|
|
// Process-level LRU cache lookup by (segment_id, expr signature)
|
|
if (cached_match_res_ == nullptr &&
|
|
exec::ExprResCacheManager::IsEnabled() &&
|
|
segment_->type() == SegmentType::Sealed) {
|
|
exec::ExprResCacheManager::Key key{segment_->get_segment_id(),
|
|
this->ToString()};
|
|
exec::ExprResCacheManager::Value v;
|
|
if (exec::ExprResCacheManager::Instance().Get(key, v)) {
|
|
cached_match_res_ = v.result;
|
|
cached_index_chunk_valid_res_ = v.valid_result;
|
|
AssertInfo(cached_match_res_->size() == active_count_,
|
|
"internal error: expr res cache size {} not equal "
|
|
"expect active count {}",
|
|
cached_match_res_->size(),
|
|
active_count_);
|
|
}
|
|
}
|
|
|
|
uint32_t min_should_match = 1; // default value
|
|
if (op_type == proto::plan::OpType::TextMatch &&
|
|
expr_->extra_values_.size() > 0) {
|
|
// min_should_match is stored in the first extra value
|
|
min_should_match = static_cast<uint32_t>(
|
|
GetValueFromProto<int64_t>(expr_->extra_values_[0]));
|
|
}
|
|
|
|
auto func = [op_type, slop, min_should_match](
|
|
Index* index, const std::string& query) -> TargetBitmap {
|
|
if (op_type == proto::plan::OpType::TextMatch) {
|
|
return index->MatchQuery(query, min_should_match);
|
|
} else if (op_type == proto::plan::OpType::PhraseMatch) {
|
|
return index->PhraseMatchQuery(query, slop);
|
|
} else {
|
|
ThrowInfo(OpTypeInvalid,
|
|
"unsupported operator type for match query: {}",
|
|
op_type);
|
|
}
|
|
};
|
|
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (cached_match_res_ == nullptr) {
|
|
auto pw = segment_->GetTextIndex(op_ctx_, field_id_);
|
|
auto index = pw.get();
|
|
auto res = std::move(func(index, query));
|
|
auto valid_res = index->IsNotNull();
|
|
cached_match_res_ = std::make_shared<TargetBitmap>(std::move(res));
|
|
cached_index_chunk_valid_res_ =
|
|
std::make_shared<TargetBitmap>(std::move(valid_res));
|
|
if (cached_match_res_->size() < active_count_) {
|
|
// some entities are not visible in inverted index.
|
|
// only happend on growing segment.
|
|
TargetBitmap tail(active_count_ - cached_match_res_->size());
|
|
cached_match_res_->append(tail);
|
|
cached_index_chunk_valid_res_->append(tail);
|
|
}
|
|
|
|
// Insert into process-level cache
|
|
if (exec::ExprResCacheManager::IsEnabled() &&
|
|
segment_->type() == SegmentType::Sealed) {
|
|
exec::ExprResCacheManager::Key key{segment_->get_segment_id(),
|
|
this->ToString()};
|
|
exec::ExprResCacheManager::Value v;
|
|
v.result = cached_match_res_;
|
|
v.valid_result = cached_index_chunk_valid_res_;
|
|
v.active_count = active_count_;
|
|
exec::ExprResCacheManager::Instance().Put(key, v);
|
|
}
|
|
}
|
|
|
|
TargetBitmap result;
|
|
TargetBitmap valid_result;
|
|
result.append(
|
|
*cached_match_res_, current_data_global_pos_, real_batch_size);
|
|
valid_result.append(*cached_index_chunk_valid_res_,
|
|
current_data_global_pos_,
|
|
real_batch_size);
|
|
MoveCursor();
|
|
return std::make_shared<ColumnVector>(std::move(result),
|
|
std::move(valid_result));
|
|
};
|
|
|
|
bool
|
|
PhyUnaryRangeFilterExpr::CanUseNgramIndex() const {
|
|
return pinned_ngram_index_.get() != nullptr && !has_offset_input_;
|
|
}
|
|
|
|
std::optional<VectorPtr>
|
|
PhyUnaryRangeFilterExpr::ExecNgramMatch() {
|
|
if (!arg_inited_) {
|
|
value_arg_.SetValue<std::string>(expr_->val_);
|
|
arg_inited_ = true;
|
|
}
|
|
|
|
auto literal = value_arg_.GetValue<std::string>();
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
if (cached_ngram_match_res_ == nullptr) {
|
|
auto index = pinned_ngram_index_.get();
|
|
AssertInfo(index != nullptr,
|
|
"ngram index should not be null, field_id: {}",
|
|
field_id_.get());
|
|
auto res_opt = index->ExecuteQuery(literal, expr_->op_type_, this);
|
|
if (!res_opt.has_value()) {
|
|
return std::nullopt;
|
|
}
|
|
cached_ngram_match_res_ =
|
|
std::make_shared<TargetBitmap>(std::move(res_opt.value()));
|
|
cached_index_chunk_valid_res_ =
|
|
std::make_shared<TargetBitmap>(std::move(index->IsNotNull()));
|
|
}
|
|
|
|
TargetBitmap result;
|
|
TargetBitmap valid_result;
|
|
result.append(
|
|
*cached_ngram_match_res_, current_data_global_pos_, real_batch_size);
|
|
valid_result.append(*cached_index_chunk_valid_res_,
|
|
current_data_global_pos_,
|
|
real_batch_size);
|
|
MoveCursor();
|
|
return std::make_shared<ColumnVector>(std::move(result),
|
|
std::move(valid_result));
|
|
}
|
|
|
|
} // namespace exec
|
|
} // namespace milvus
|