import pytest from base.client_v2_base import TestMilvusClientV2Base from utils.util_log import test_log as log from common import common_func as cf from common import common_type as ct from common.common_type import CaseLabel, CheckTasks from utils.util_pymilvus import * prefix = "client_delete" epsilon = ct.epsilon default_nb = ct.default_nb default_nb_medium = ct.default_nb_medium default_nq = ct.default_nq default_dim = ct.default_dim default_limit = ct.default_limit default_search_exp = "id >= 0" exp_res = "exp_res" default_search_string_exp = "varchar >= \"0\"" default_search_mix_exp = "int64 >= 0 && varchar >= \"0\"" default_invaild_string_exp = "varchar >= 0" default_json_search_exp = "json_field[\"number\"] >= 0" perfix_expr = 'varchar like "0%"' default_search_field = ct.default_float_vec_field_name default_search_params = ct.default_search_params default_primary_key_field_name = "id" default_vector_field_name = "vector" default_float_field_name = ct.default_float_field_name default_bool_field_name = ct.default_bool_field_name default_string_field_name = ct.default_string_field_name default_int32_array_field_name = ct.default_int32_array_field_name default_string_array_field_name = ct.default_string_array_field_name class TestMilvusClientDeleteInvalid(TestMilvusClientV2Base): """ Test case of search interface """ @pytest.fixture(scope="function", params=[False, True]) def auto_id(self, request): yield request.param @pytest.fixture(scope="function", params=["COSINE", "L2"]) def metric_type(self, request): yield request.param """ ****************************************************************** # The following are invalid base cases ****************************************************************** """ @pytest.mark.tags(CaseLabel.L1) def test_milvus_client_delete_with_filters_and_ids(self): """ target: test delete (high level api) with ids and filters method: create connection, collection, insert, delete, and search expected: raise exception """ client = self._client() collection_name = cf.gen_unique_str(prefix) # 1. create collection self.create_collection(client, collection_name, default_dim, consistency_level="Strong") # 2. insert default_nb = 1000 rng = np.random.default_rng(seed=19530) rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]), default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)] pks = self.insert(client, collection_name, rows)[0] # 3. delete delete_num = 3 self.delete(client, collection_name, ids=[i for i in range(delete_num)], filter=f"id < {delete_num}", check_task=CheckTasks.err_res, check_items={"err_code": 1, "err_msg": "Ambiguous filter parameter, " "only one deletion condition can be specified."}) self.drop_collection(client, collection_name) @pytest.mark.tags(CaseLabel.L1) @pytest.mark.skip(reason="pymilvus issue 1869") def test_milvus_client_delete_with_invalid_id_type(self): """ target: test delete (high level api) method: create connection, collection, insert delete, and search expected: search/query successfully without deleted data """ client = self._client() collection_name = cf.gen_unique_str(prefix) # 1. create collection self.create_collection(client, collection_name, default_dim, consistency_level="Strong") # 2. delete self.delete(client, collection_name, ids=0, check_task=CheckTasks.err_res, check_items={"err_code": 1, "err_msg": "expr cannot be empty"}) @pytest.mark.tags(CaseLabel.L2) def test_milvus_client_delete_with_not_all_required_params(self): """ target: test delete (high level api) method: create connection, collection, insert delete, and search expected: search/query successfully without deleted data """ client = self._client() collection_name = cf.gen_unique_str(prefix) # 1. create collection self.create_collection(client, collection_name, default_dim, consistency_level="Strong") # 2. delete self.delete(client, collection_name, check_task=CheckTasks.err_res, check_items={"err_code": 999, "err_msg": "The type of expr must be string ,but is given."}) class TestMilvusClientDeleteValid(TestMilvusClientV2Base): """ Test case of search interface """ @pytest.fixture(scope="function", params=[False, True]) def auto_id(self, request): yield request.param @pytest.fixture(scope="function", params=["COSINE", "L2"]) def metric_type(self, request): yield request.param @pytest.fixture(scope="function", params=["INVERTED"]) def supported_varchar_scalar_index(self, request): yield request.param @pytest.fixture(scope="function", params=["DOUBLE", "VARCHAR", "json", "bool"]) def supported_json_cast_type(self, request): yield request.param """ ****************************************************************** # The following are valid base cases ****************************************************************** """ @pytest.mark.tags(CaseLabel.L1) def test_milvus_client_delete_with_ids(self): """ target: test delete (high level api) method: create connection, collection, insert delete, and search expected: search/query successfully without deleted data """ client = self._client() collection_name = cf.gen_collection_name_by_testcase_name() # 1. create collection self.create_collection(client, collection_name, default_dim, consistency_level="Strong") # 2. insert default_nb = 1000 rng = np.random.default_rng(seed=19530) rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]), default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)] pks = self.insert(client, collection_name, rows)[0] # 3. delete delete_num = 3 self.delete(client, collection_name, ids=[i for i in range(delete_num)]) # 4. search vectors_to_search = rng.random((1, default_dim)) insert_ids = [i for i in range(default_nb)] for insert_id in range(delete_num): if insert_id in insert_ids: insert_ids.remove(insert_id) limit = default_nb - delete_num self.search(client, collection_name, vectors_to_search, limit=default_nb, check_task=CheckTasks.check_search_results, check_items={"enable_milvus_client_api": True, "nq": len(vectors_to_search), "pk_name": default_primary_key_field_name, "ids": insert_ids, "limit": limit}) # 5. query self.query(client, collection_name, filter=default_search_exp, check_task=CheckTasks.check_query_results, check_items={exp_res: rows[delete_num:], "with_vec": True, "pk_name": default_primary_key_field_name}) self.drop_collection(client, collection_name) @pytest.mark.tags(CaseLabel.L1) def test_milvus_client_delete_with_filters(self): """ target: test delete (high level api) method: create connection, collection, insert delete, and search expected: search/query successfully without deleted data """ client = self._client() collection_name = cf.gen_collection_name_by_testcase_name() # 1. create collection self.create_collection(client, collection_name, default_dim, consistency_level="Strong") # 2. insert default_nb = 1000 rng = np.random.default_rng(seed=19530) rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]), default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)] pks = self.insert(client, collection_name, rows)[0] # 3. delete delete_num = 3 self.delete(client, collection_name, filter=f"id < {delete_num}") # 4. search vectors_to_search = rng.random((1, default_dim)) insert_ids = [i for i in range(default_nb)] for insert_id in range(delete_num): if insert_id in insert_ids: insert_ids.remove(insert_id) limit = default_nb - delete_num self.search(client, collection_name, vectors_to_search, limit=default_nb, check_task=CheckTasks.check_search_results, check_items={"enable_milvus_client_api": True, "nq": len(vectors_to_search), "ids": insert_ids, "pk_name": default_primary_key_field_name, "limit": limit}) # 5. query self.query(client, collection_name, filter=default_search_exp, check_task=CheckTasks.check_query_results, check_items={exp_res: rows[delete_num:], "with_vec": True, "pk_name": default_primary_key_field_name}) self.drop_collection(client, collection_name) @pytest.mark.tags(CaseLabel.L1) @pytest.mark.parametrize("add_field", [True, False]) def test_milvus_client_delete_with_filters_partition(self, add_field): """ target: test delete (high level api) method: create connection, collection, insert delete, and search expected: search/query successfully without deleted data """ client = self._client() collection_name = cf.gen_collection_name_by_testcase_name() # 1. create collection self.create_collection(client, collection_name, default_dim, consistency_level="Strong") # 2. insert default_nb = 1000 rng = np.random.default_rng(seed=19530) rows = [ { default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]), default_float_field_name: i * 1.0, default_string_field_name: str(i), **({"field_new": "default"} if add_field else {}) } for i in range(default_nb) ] if add_field: self.add_collection_field(client, collection_name, field_name="field_new", data_type=DataType.VARCHAR, nullable=True, max_length=64) pks = self.insert(client, collection_name, rows)[0] # 3. get partition lists partition_names = self.list_partitions(client, collection_name) # 4. delete delete_num = 3 filter = f"id < {delete_num} " if add_field: filter += "and field_new == 'default'" self.delete(client, collection_name, filter=filter, partition_names=partition_names) # 5. search vectors_to_search = rng.random((1, default_dim)) insert_ids = [i for i in range(default_nb)] for insert_id in range(delete_num): if insert_id in insert_ids: insert_ids.remove(insert_id) limit = default_nb - delete_num self.search(client, collection_name, vectors_to_search, limit=default_nb, check_task=CheckTasks.check_search_results, check_items={"enable_milvus_client_api": True, "nq": len(vectors_to_search), "ids": insert_ids, "pk_name": default_primary_key_field_name, "limit": limit}) # 6. query self.query(client, collection_name, filter=default_search_exp, check_task=CheckTasks.check_query_results, check_items={exp_res: rows[delete_num:], "with_vec": True, "pk_name": default_primary_key_field_name}) self.drop_collection(client, collection_name) @pytest.mark.tags(CaseLabel.L1) @pytest.mark.parametrize("enable_dynamic_field", [True, False]) @pytest.mark.parametrize("is_flush", [True, False]) @pytest.mark.parametrize("is_release", [True, False]) def test_milvus_client_delete_with_filters_json_path_index(self, enable_dynamic_field, supported_varchar_scalar_index, supported_json_cast_type, is_flush, is_release): """ target: test delete after json path index created method: create connection, collection, index, insert, delete, and search Step: 1. create schema 2. prepare index_params with vector and all the json path index params 3. create collection with the above schema and index params 4. insert 5. flush if specified 6. release collection if specified 7. load collection if specified 8. delete with expression on json path 9. search and query to check that the deleted entities not searched expected: Delete and search/query successfully """ client = self._client() collection_name = cf.gen_collection_name_by_testcase_name() # 1. create collection json_field_name = "my_json" schema = self.create_schema(client, enable_dynamic_field=enable_dynamic_field)[0] schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False) schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim) schema.add_field(default_float_field_name, DataType.FLOAT) schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64) if not enable_dynamic_field: schema.add_field(json_field_name, DataType.JSON) index_params = self.prepare_index_params(client)[0] index_params.add_index(field_name=default_vector_field_name, index_type="AUTOINDEX", metric_type="L2") index_params.add_index(field_name=json_field_name, index_type=supported_varchar_scalar_index, params={"json_cast_type": supported_json_cast_type, "json_path": f"{json_field_name}['a']['b']"}) index_params.add_index(field_name=json_field_name, index_type=supported_varchar_scalar_index, params={"json_cast_type": supported_json_cast_type, "json_path": f"{json_field_name}['a']"}) index_params.add_index(field_name=json_field_name, index_type=supported_varchar_scalar_index, params={"json_cast_type": supported_json_cast_type, "json_path": f"{json_field_name}"}) index_params.add_index(field_name=json_field_name, index_type=supported_varchar_scalar_index, params={"json_cast_type": supported_json_cast_type, "json_path": f"{json_field_name}['a'][0]['b']"}) index_params.add_index(field_name=json_field_name, index_type=supported_varchar_scalar_index, params={"json_cast_type": supported_json_cast_type, "json_path": f"{json_field_name}['a'][0]"}) self.create_collection(client, collection_name, schema=schema, index_params=index_params, metric_type="L2") # 2. insert default_nb = 1000 rng = np.random.default_rng(seed=19530) rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]), default_float_field_name: i * 1.0, default_string_field_name: str(i), json_field_name: {'a': {'b': i}}} for i in range(default_nb)] pks = self.insert(client, collection_name, rows)[0] if is_flush: self.flush(client, collection_name) if is_release: self.release_collection(client, collection_name) self.load_collection(client, collection_name) # 3. delete delete_num = 3 self.delete(client, collection_name, filter=f"{json_field_name}['a']['b'] < {delete_num}") # 4. search vectors_to_search = rng.random((1, default_dim)) insert_ids = [i for i in range(default_nb)] for insert_id in range(delete_num): if insert_id in insert_ids: insert_ids.remove(insert_id) limit = default_nb - delete_num self.search(client, collection_name, vectors_to_search, limit=default_nb, check_task=CheckTasks.check_search_results, check_items={"enable_milvus_client_api": True, "nq": len(vectors_to_search), "ids": insert_ids, "pk_name": default_primary_key_field_name, "limit": limit}) # 5. query self.query(client, collection_name, filter=default_search_exp, check_task=CheckTasks.check_query_results, check_items={exp_res: rows[delete_num:], "with_vec": True, "pk_name": default_primary_key_field_name}) self.drop_collection(client, collection_name)