import os import random import math import string import json import time import uuid from functools import singledispatch import numpy as np import pandas as pd from ml_dtypes import bfloat16 from sklearn import preprocessing from npy_append_array import NpyAppendArray from faker import Faker from pathlib import Path from minio import Minio from base.schema_wrapper import ApiCollectionSchemaWrapper, ApiFieldSchemaWrapper from common import common_type as ct from common.common_params import ExprCheckParams from utils.util_log import test_log as log from customize.milvus_operator import MilvusOperator import pickle from collections import Counter import bm25s import jieba import re import inspect from pymilvus import CollectionSchema, DataType, FunctionType, Function, MilvusException, MilvusClient from bm25s.tokenization import Tokenizer fake = Faker() from common.common_params import Expr """" Methods of processing data """ try: RNG = np.random.default_rng(seed=0) except ValueError as e: RNG = None @singledispatch def to_serializable(val): """Used by default.""" return str(val) @to_serializable.register(np.float32) def ts_float32(val): """Used if *val* is an instance of numpy.float32.""" return np.float64(val) class ParamInfo: def __init__(self): self.param_host = "" self.param_port = "" self.param_handler = "" self.param_user = "" self.param_password = "" self.param_secure = False self.param_replica_num = ct.default_replica_num self.param_uri = "" self.param_token = "" self.param_bucket_name = "" def prepare_param_info(self, host, port, handler, replica_num, user, password, secure, uri, token, bucket_name): self.param_host = host self.param_port = port self.param_handler = handler self.param_user = user self.param_password = password self.param_secure = secure self.param_replica_num = replica_num self.param_uri = uri self.param_token = token self.param_bucket_name = bucket_name param_info = ParamInfo() en_vocabularies_distribution = { "hello": 0.01, "milvus": 0.01, "vector": 0.01, "database": 0.01 } zh_vocabularies_distribution = { "你好": 0.01, "向量": 0.01, "数据": 0.01, "库": 0.01 } def patch_faker_text(fake_instance, vocabularies_distribution): """ Monkey patch the text() method of a Faker instance to include custom vocabulary. Each word in vocabularies_distribution has an independent chance to be inserted. Args: fake_instance: Faker instance to patch vocabularies_distribution: Dictionary where: - key: word to insert - value: probability (0-1) of inserting this word into each sentence Example: vocabularies_distribution = { "hello": 0.1, # 10% chance to insert "hello" in each sentence "milvus": 0.1, # 10% chance to insert "milvus" in each sentence } """ original_text = fake_instance.text def new_text(nb_sentences=100, *args, **kwargs): sentences = [] # Split original text into sentences original_sentences = original_text(nb_sentences).split('.') original_sentences = [s.strip() for s in original_sentences if s.strip()] for base_sentence in original_sentences: words = base_sentence.split() # Independently decide whether to insert each word for word, probability in vocabularies_distribution.items(): if random.random() < probability: # Choose random position to insert the word insert_pos = random.randint(0, len(words)) words.insert(insert_pos, word) # Reconstruct the sentence base_sentence = ' '.join(words) # Ensure proper capitalization base_sentence = base_sentence[0].upper() + base_sentence[1:] sentences.append(base_sentence) return '. '.join(sentences) + '.' # Replace the original text method with our custom one fake_instance.text = new_text def get_bm25_ground_truth(corpus, queries, top_k=100, language="en"): """ Get the ground truth for BM25 search. :param corpus: The corpus of documents :param queries: The query string or list of query strings :return: The ground truth for BM25 search """ def remove_punctuation(text): text = text.strip() text = text.replace("\n", " ") return re.sub(r'[^\w\s]', ' ', text) # Tokenize the corpus def jieba_split(text): text_without_punctuation = remove_punctuation(text) return jieba.lcut(text_without_punctuation) stopwords = "english" if language in ["en", "english"] else [" "] stemmer = None if language in ["zh", "cn", "chinese"]: splitter = jieba_split tokenizer = Tokenizer( stemmer=stemmer, splitter=splitter, stopwords=stopwords ) else: tokenizer = Tokenizer( stemmer=stemmer, stopwords=stopwords ) corpus_tokens = tokenizer.tokenize(corpus, return_as="tuple") retriever = bm25s.BM25() retriever.index(corpus_tokens) query_tokens = tokenizer.tokenize(queries,return_as="tuple") results, scores = retriever.retrieve(query_tokens, corpus=corpus, k=top_k) return results, scores def custom_tokenizer(language="en"): def remove_punctuation(text): text = text.strip() text = text.replace("\n", " ") return re.sub(r'[^\w\s]', ' ', text) # Tokenize the corpus def jieba_split(text): text_without_punctuation = remove_punctuation(text) return jieba.cut_for_search(text_without_punctuation) def blank_space_split(text): text_without_punctuation = remove_punctuation(text) return text_without_punctuation.split() stopwords = [" "] stemmer = None if language in ["zh", "cn", "chinese"]: splitter = jieba_split tokenizer = Tokenizer( stemmer=stemmer, splitter=splitter, stopwords=stopwords ) else: splitter = blank_space_split tokenizer = Tokenizer( stemmer=stemmer, splitter= splitter, stopwords=stopwords ) return tokenizer def manual_check_text_match(df, word, col): id_list = [] for i in range(len(df)): row = df.iloc[i] # log.info(f"word :{word}, row: {row[col]}") if word in row[col]: id_list.append(row["id"]) return id_list def get_top_english_tokens(counter, n=10): english_pattern = re.compile(r'^[a-zA-Z]+$') english_tokens = { word: freq for word, freq in counter.items() if english_pattern.match(str(word)) } english_counter = Counter(english_tokens) return english_counter.most_common(n) def analyze_documents(texts, language="en"): tokenizer = custom_tokenizer(language) new_texts = [] for text in texts: if isinstance(text, str): new_texts.append(text) # Tokenize the corpus tokenized = tokenizer.tokenize(new_texts, return_as="tuple", show_progress=False) # log.info(f"Tokenized: {tokenized}") # Create a frequency counter freq = Counter() # Count the frequency of each token for doc_ids in tokenized.ids: freq.update(doc_ids) # Create a reverse vocabulary mapping id_to_word = {id: word for word, id in tokenized.vocab.items()} # Convert token ids back to words word_freq = Counter({id_to_word[token_id]: count for token_id, count in freq.items()}) # if language in ["zh", "cn", "chinese"], remove the long words # this is a trick to make the text match test case verification simple, because the long word can be still split if language in ["zh", "cn", "chinese"]: word_freq = Counter({word: count for word, count in word_freq.items() if 1< len(word) <= 3}) log.info(f"word freq {word_freq.most_common(10)}") return word_freq def analyze_documents_with_analyzer_params(texts, analyzer_params): if param_info.param_uri: uri = param_info.param_uri else: uri = "http://" + param_info.param_host + ":" + str(param_info.param_port) client = MilvusClient( uri = uri, token = param_info.param_token ) freq = Counter() res = client.run_analyzer(texts, analyzer_params, with_detail=True, with_hash=True) for r in res: freq.update(t['token'] for t in r.tokens) log.info(f"word freq {freq.most_common(10)}") return freq def check_token_overlap(text_a, text_b, language="en"): word_freq_a = analyze_documents([text_a], language) word_freq_b = analyze_documents([text_b], language) overlap = set(word_freq_a.keys()).intersection(set(word_freq_b.keys())) return overlap, word_freq_a, word_freq_b def split_dataframes(df, fields, language="en"): df_copy = df.copy() for col in fields: tokenizer = custom_tokenizer(language) texts = df[col].to_list() tokenized = tokenizer.tokenize(texts, return_as="tuple") new_texts = [] id_vocab_map = {id: word for word, id in tokenized.vocab.items()} for doc_ids in tokenized.ids: new_texts.append([id_vocab_map[token_id] for token_id in doc_ids]) df_copy[col] = new_texts return df_copy def generate_pandas_text_match_result(expr, df): def manual_check(expr): if "not" in expr: key = expr["not"]["field"] value = expr["not"]["value"] return lambda row: value not in row[key] key = expr["field"] value = expr["value"] return lambda row: value in row[key] if "not" in expr: key = expr["not"]["field"] else: key = expr["field"] manual_result = df[df.apply(manual_check(expr), axis=1)] log.info(f"pandas filter result {len(manual_result)}\n{manual_result[key]}") return manual_result def generate_text_match_expr(query_dict): """ Generate a TextMatch expression with multiple logical operators and field names. :param query_dict: A dictionary representing the query structure :return: A string representing the TextMatch expression """ def process_node(node): if isinstance(node, dict) and 'field' in node and 'value' in node: return f"TEXT_MATCH({node['field']}, '{node['value']}')" elif isinstance(node, dict) and 'not' in node: return f"not {process_node(node['not'])}" elif isinstance(node, list): return ' '.join(process_node(item) for item in node) elif isinstance(node, str): return node else: raise ValueError(f"Invalid node type: {type(node)}") return f"({process_node(query_dict)})" def generate_pandas_query_string(query): def process_node(node): if isinstance(node, dict): if 'field' in node and 'value' in node: return f"('{node['value']}' in row['{node['field']}'])" elif 'not' in node: return f"not {process_node(node['not'])}" elif isinstance(node, str): return node else: raise ValueError(f"Invalid node type: {type(node)}") parts = [process_node(item) for item in query] expression = ' '.join(parts).replace('and', 'and').replace('or', 'or') log.info(f"Generated pandas query: {expression}") return lambda row: eval(expression) def evaluate_expression(step_by_step_results): # merge result of different steps to final result def apply_operator(operators, operands): operator = operators.pop() right = operands.pop() left = operands.pop() if operator == "and": operands.append(left.intersection(right)) elif operator == "or": operands.append(left.union(right)) operators = [] operands = [] for item in step_by_step_results: if isinstance(item, list): operands.append(set(item)) elif item in ("and", "or"): while operators and operators[-1] == "and" and item == "or": apply_operator(operators, operands) operators.append(item) while operators: apply_operator(operators, operands) return operands[0] if operands else set() def generate_random_query_from_freq_dict(freq_dict, min_freq=1, max_terms=3, p_not=0.2): """ Generate a random query expression from a dictionary of field frequencies. :param freq_dict: A dictionary where keys are field names and values are word frequency dictionaries :param min_freq: Minimum frequency for a word to be included in the query (default: 1) :param max_terms: Maximum number of terms in the query (default: 3) :param p_not: Probability of using NOT for any term (default: 0.2) :return: A tuple of (query list, query expression string) example: freq_dict = { "title": {"The": 3, "Lord": 2, "Rings": 2, "Harry": 1, "Potter": 1}, "author": {"Tolkien": 2, "Rowling": 1, "Orwell": 1}, "description": {"adventure": 4, "fantasy": 3, "magic": 1, "dystopian": 2} } print("Random queries from frequency dictionary:") for _ in range(5): query_list, expr = generate_random_query_from_freq_dict(freq_dict, min_freq=1, max_terms=4, p_not=0.2) print(f"Query: {query_list}") print(f"Expression: {expr}") print() """ def random_term(field, words): term = {"field": field, "value": random.choice(words)} if random.random() < p_not: return {"not": term} return term # Filter words based on min_freq filtered_dict = { field: [word for word, freq in words.items() if freq >= min_freq] for field, words in freq_dict.items() } # Remove empty fields filtered_dict = {k: v for k, v in filtered_dict.items() if v} if not filtered_dict: return [], "" # Randomly select fields and terms query = [] for _ in range(min(max_terms, sum(len(words) for words in filtered_dict.values()))): if not filtered_dict: break field = random.choice(list(filtered_dict.keys())) if filtered_dict[field]: term = random_term(field, filtered_dict[field]) query.append(term) # Insert random AND/OR between terms if query and _ < max_terms - 1: query.append(random.choice(["and", "or"])) # Remove the used word to avoid repetition used_word = term['value'] if isinstance(term, dict) and 'value' in term else term['not']['value'] filtered_dict[field].remove(used_word) if not filtered_dict[field]: del filtered_dict[field] return query, generate_text_match_expr(query), generate_pandas_query_string(query) def generate_array_dataset(size, array_length, hit_probabilities, target_values): dataset = [] target_array_length = target_values.get('array_length_field', None) target_array_access = target_values.get('array_access', None) all_target_values = set( val for sublist in target_values.values() for val in (sublist if isinstance(sublist, list) else [sublist])) for i in range(size): entry = {"id": i} # Generate random arrays for each condition for condition in hit_probabilities.keys(): available_values = [val for val in range(1, 100) if val not in all_target_values] array = random.sample(available_values, array_length) # Ensure the array meets the condition based on its probability if random.random() < hit_probabilities[condition]: if condition == 'contains': if target_values[condition] not in array: array[random.randint(0, array_length - 1)] = target_values[condition] elif condition == 'contains_any': if not any(val in array for val in target_values[condition]): array[random.randint(0, array_length - 1)] = random.choice(target_values[condition]) elif condition == 'contains_all': indices = random.sample(range(array_length), len(target_values[condition])) for idx, val in zip(indices, target_values[condition]): array[idx] = val elif condition == 'equals': array = target_values[condition][:] elif condition == 'array_length_field': array = [random.randint(0, 10) for _ in range(target_array_length)] elif condition == 'array_access': array = [random.randint(0, 10) for _ in range(random.randint(10, 20))] array[target_array_access[0]] = target_array_access[1] else: raise ValueError(f"Unknown condition: {condition}") entry[condition] = array dataset.append(entry) return dataset def prepare_array_test_data(data_size, hit_rate=0.005, dim=128): size = data_size # Number of arrays in the dataset array_length = 10 # Length of each array # Probabilities that an array hits the target condition hit_probabilities = { 'contains': hit_rate, 'contains_any': hit_rate, 'contains_all': hit_rate, 'equals': hit_rate, 'array_length_field': hit_rate, 'array_access': hit_rate } # Target values for each condition target_values = { 'contains': 42, 'contains_any': [21, 37, 42], 'contains_all': [15, 30], 'equals': [1,2,3,4,5], 'array_length_field': 5, # array length == 5 'array_access': [0, 5] # index=0, and value == 5 } # Generate dataset dataset = generate_array_dataset(size, array_length, hit_probabilities, target_values) data = { "id": pd.Series([x["id"] for x in dataset]), "contains": pd.Series([x["contains"] for x in dataset]), "contains_any": pd.Series([x["contains_any"] for x in dataset]), "contains_all": pd.Series([x["contains_all"] for x in dataset]), "equals": pd.Series([x["equals"] for x in dataset]), "array_length_field": pd.Series([x["array_length_field"] for x in dataset]), "array_access": pd.Series([x["array_access"] for x in dataset]), "emb": pd.Series([np.array([random.random() for j in range(dim)], dtype=np.dtype("float32")) for _ in range(size)]) } # Define testing conditions contains_value = target_values['contains'] contains_any_values = target_values['contains_any'] contains_all_values = target_values['contains_all'] equals_array = target_values['equals'] # Perform tests contains_result = [d for d in dataset if contains_value in d["contains"]] contains_any_result = [d for d in dataset if any(val in d["contains_any"] for val in contains_any_values)] contains_all_result = [d for d in dataset if all(val in d["contains_all"] for val in contains_all_values)] equals_result = [d for d in dataset if d["equals"] == equals_array] array_length_result = [d for d in dataset if len(d["array_length_field"]) == target_values['array_length_field']] array_access_result = [d for d in dataset if d["array_access"][0] == target_values['array_access'][1]] # Calculate and log.info proportions contains_ratio = len(contains_result) / size contains_any_ratio = len(contains_any_result) / size contains_all_ratio = len(contains_all_result) / size equals_ratio = len(equals_result) / size array_length_ratio = len(array_length_result) / size array_access_ratio = len(array_access_result) / size log.info(f"\nProportion of arrays that contain the value: {contains_ratio}") log.info(f"Proportion of arrays that contain any of the values: {contains_any_ratio}") log.info(f"Proportion of arrays that contain all of the values: {contains_all_ratio}") log.info(f"Proportion of arrays that equal the target array: {equals_ratio}") log.info(f"Proportion of arrays that have the target array length: {array_length_ratio}") log.info(f"Proportion of arrays that have the target array access: {array_access_ratio}") train_df = pd.DataFrame(data) target_id = { "contains": [r["id"] for r in contains_result], "contains_any": [r["id"] for r in contains_any_result], "contains_all": [r["id"] for r in contains_all_result], "equals": [r["id"] for r in equals_result], "array_length": [r["id"] for r in array_length_result], "array_access": [r["id"] for r in array_access_result] } target_id_list = [target_id[key] for key in ["contains", "contains_any", "contains_all", "equals", "array_length", "array_access"]] filters = [ "array_contains(contains, 42)", "array_contains_any(contains_any, [21, 37, 42])", "array_contains_all(contains_all, [15, 30])", "equals == [1,2,3,4,5]", "array_length(array_length_field) == 5", "array_access[0] == 5" ] query_expr = [] for i in range(len(filters)): item = { "expr": filters[i], "ground_truth": target_id_list[i], } query_expr.append(item) return train_df, query_expr def gen_unique_str(str_value=None): prefix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(8)) return "test_" + prefix if str_value is None else str_value + "_" + prefix def gen_str_by_length(length=8, letters_only=False, contain_numbers=False): if letters_only: return "".join(random.choice(string.ascii_letters) for _ in range(length)) if contain_numbers: return "".join(random.choice(string.ascii_letters) for _ in range(length-1)) + \ "".join(random.choice(string.digits)) return "".join(random.choice(string.ascii_letters + string.digits) for _ in range(length)) def generate_random_sentence(language): language_map = { "English": "en_US", "French": "fr_FR", "Spanish": "es_ES", "German": "de_DE", "Italian": "it_IT", "Portuguese": "pt_PT", "Russian": "ru_RU", "Chinese": "zh_CN", "Japanese": "ja_JP", "Korean": "ko_KR", "Arabic": "ar_SA", "Hindi": "hi_IN" } lang_code = language_map.get(language, "en_US") faker = Faker(lang_code) return faker.sentence() def gen_digits_by_length(length=8): return "".join(random.choice(string.digits) for _ in range(length)) def gen_bool_field(name=ct.default_bool_field_name, description=ct.default_desc, is_primary=False, **kwargs): bool_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BOOL, description=description, is_primary=is_primary, **kwargs) return bool_field def gen_string_field(name=ct.default_string_field_name, description=ct.default_desc, is_primary=False, max_length=ct.default_length, **kwargs): string_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.VARCHAR, description=description, max_length=max_length, is_primary=is_primary, **kwargs) return string_field def gen_json_field(name=ct.default_json_field_name, description=ct.default_desc, is_primary=False, **kwargs): json_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.JSON, description=description, is_primary=is_primary, **kwargs) return json_field def gen_array_field(name=ct.default_array_field_name, element_type=DataType.INT64, max_capacity=ct.default_max_capacity, description=ct.default_desc, is_primary=False, **kwargs): array_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.ARRAY, element_type=element_type, max_capacity=max_capacity, description=description, is_primary=is_primary, **kwargs) return array_field def gen_int8_field(name=ct.default_int8_field_name, description=ct.default_desc, is_primary=False, **kwargs): int8_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT8, description=description, is_primary=is_primary, **kwargs) return int8_field def gen_int16_field(name=ct.default_int16_field_name, description=ct.default_desc, is_primary=False, **kwargs): int16_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT16, description=description, is_primary=is_primary, **kwargs) return int16_field def gen_int32_field(name=ct.default_int32_field_name, description=ct.default_desc, is_primary=False, **kwargs): int32_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT32, description=description, is_primary=is_primary, **kwargs) return int32_field def gen_int64_field(name=ct.default_int64_field_name, description=ct.default_desc, is_primary=False, **kwargs): int64_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT64, description=description, is_primary=is_primary, **kwargs) return int64_field def gen_float_field(name=ct.default_float_field_name, is_primary=False, description=ct.default_desc, **kwargs): float_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.FLOAT, description=description, is_primary=is_primary, **kwargs) return float_field def gen_double_field(name=ct.default_double_field_name, is_primary=False, description=ct.default_desc, **kwargs): double_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.DOUBLE, description=description, is_primary=is_primary, **kwargs) return double_field def gen_float_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim, description=ct.default_desc, vector_data_type=DataType.FLOAT_VECTOR, **kwargs): if vector_data_type != DataType.SPARSE_FLOAT_VECTOR: float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=vector_data_type, description=description, dim=dim, is_primary=is_primary, **kwargs) else: # no dim for sparse vector float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.SPARSE_FLOAT_VECTOR, description=description, is_primary=is_primary, **kwargs) return float_vec_field def gen_binary_vec_field(name=ct.default_binary_vec_field_name, is_primary=False, dim=ct.default_dim, description=ct.default_desc, **kwargs): binary_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BINARY_VECTOR, description=description, dim=dim, is_primary=is_primary, **kwargs) return binary_vec_field def gen_float16_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim, description=ct.default_desc, **kwargs): float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.FLOAT16_VECTOR, description=description, dim=dim, is_primary=is_primary, **kwargs) return float_vec_field def gen_bfloat16_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim, description=ct.default_desc, **kwargs): float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BFLOAT16_VECTOR, description=description, dim=dim, is_primary=is_primary, **kwargs) return float_vec_field def gen_sparse_vec_field(name=ct.default_sparse_vec_field_name, is_primary=False, description=ct.default_desc, **kwargs): sparse_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.SPARSE_FLOAT_VECTOR, description=description, is_primary=is_primary, **kwargs) return sparse_vec_field def gen_default_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, auto_id=False, dim=ct.default_dim, enable_dynamic_field=False, with_json=True, multiple_dim_array=[], is_partition_key=None, vector_data_type=DataType.FLOAT_VECTOR, nullable_fields={}, default_value_fields={}, **kwargs): # gen primary key field if default_value_fields.get(ct.default_int64_field_name) is None: int64_field = gen_int64_field(is_partition_key=(is_partition_key == ct.default_int64_field_name), nullable=(ct.default_int64_field_name in nullable_fields)) else: int64_field = gen_int64_field(is_partition_key=(is_partition_key == ct.default_int64_field_name), nullable=(ct.default_int64_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_int64_field_name)) if default_value_fields.get(ct.default_string_field_name) is None: string_field = gen_string_field(is_partition_key=(is_partition_key == ct.default_string_field_name), nullable=(ct.default_string_field_name in nullable_fields)) else: string_field = gen_string_field(is_partition_key=(is_partition_key == ct.default_string_field_name), nullable=(ct.default_string_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_string_field_name)) # gen vector field if default_value_fields.get(ct.default_float_vec_field_name) is None: float_vector_field = gen_float_vec_field(dim=dim, vector_data_type=vector_data_type, nullable=(ct.default_float_vec_field_name in nullable_fields)) else: float_vector_field = gen_float_vec_field(dim=dim, vector_data_type=vector_data_type, nullable=(ct.default_float_vec_field_name in nullable_fields), default_value=default_value_fields.get( ct.default_float_vec_field_name)) if primary_field is ct.default_int64_field_name: fields = [int64_field] elif primary_field is ct.default_string_field_name: fields = [string_field] else: log.error("Primary key only support int or varchar") assert False if enable_dynamic_field: fields.append(float_vector_field) else: if default_value_fields.get(ct.default_float_field_name) is None: float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields)) else: float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_float_field_name)) if default_value_fields.get(ct.default_json_field_name) is None: json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields)) else: json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_json_field_name)) fields = [int64_field, float_field, string_field, json_field, float_vector_field] if with_json is False: fields.remove(json_field) if len(multiple_dim_array) != 0: for other_dim in multiple_dim_array: fields.append(gen_float_vec_field(gen_unique_str("multiple_vector"), dim=other_dim, vector_data_type=vector_data_type)) schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description, primary_field=primary_field, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field, **kwargs) return schema def gen_all_datatype_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, auto_id=False, dim=ct.default_dim, enable_dynamic_field=True, nullable=True,**kwargs): analyzer_params = { "tokenizer": "standard", } fields = [ gen_int64_field(), gen_float_field(nullable=nullable), gen_string_field(nullable=nullable), gen_string_field(name="document", max_length=2000, enable_analyzer=True, enable_match=True, nullable=nullable), gen_string_field(name="text", max_length=2000, enable_analyzer=True, enable_match=True, analyzer_params=analyzer_params), gen_json_field(nullable=nullable), gen_array_field(name="array_int", element_type=DataType.INT64), gen_array_field(name="array_float", element_type=DataType.FLOAT), gen_array_field(name="array_varchar", element_type=DataType.VARCHAR, max_length=200), gen_array_field(name="array_bool", element_type=DataType.BOOL), gen_float_vec_field(dim=dim), gen_float_vec_field(name="image_emb", dim=dim), gen_float_vec_field(name="text_sparse_emb", vector_data_type=DataType.SPARSE_FLOAT_VECTOR), gen_float_vec_field(name="voice_emb", dim=dim), ] schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description, primary_field=primary_field, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field, **kwargs) bm25_function = Function( name=f"text", function_type=FunctionType.BM25, input_field_names=["text"], output_field_names=["text_sparse_emb"], params={}, ) schema.add_function(bm25_function) return schema def gen_array_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, auto_id=False, dim=ct.default_dim, enable_dynamic_field=False, max_capacity=ct.default_max_capacity, max_length=100, with_json=False, **kwargs): if enable_dynamic_field: if primary_field is ct.default_int64_field_name: fields = [gen_int64_field(), gen_float_vec_field(dim=dim)] elif primary_field is ct.default_string_field_name: fields = [gen_string_field(), gen_float_vec_field(dim=dim)] else: log.error("Primary key only support int or varchar") assert False else: fields = [gen_int64_field(), gen_float_vec_field(dim=dim), gen_json_field(nullable=True), gen_array_field(name=ct.default_int32_array_field_name, element_type=DataType.INT32, max_capacity=max_capacity), gen_array_field(name=ct.default_float_array_field_name, element_type=DataType.FLOAT, max_capacity=max_capacity), gen_array_field(name=ct.default_string_array_field_name, element_type=DataType.VARCHAR, max_capacity=max_capacity, max_length=max_length, nullable=True)] if with_json is False: fields.remove(gen_json_field(nullable=True)) schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description, primary_field=primary_field, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field, **kwargs) return schema def gen_bulk_insert_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, with_varchar_field=True, auto_id=False, dim=ct.default_dim, enable_dynamic_field=False, with_json=False): if enable_dynamic_field: if primary_field is ct.default_int64_field_name: fields = [gen_int64_field(), gen_float_vec_field(dim=dim)] elif primary_field is ct.default_string_field_name: fields = [gen_string_field(), gen_float_vec_field(dim=dim)] else: log.error("Primary key only support int or varchar") assert False else: fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(), gen_float_vec_field(dim=dim)] if with_json is False: fields.remove(gen_json_field()) if with_varchar_field is False: fields.remove(gen_string_field()) schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description, primary_field=primary_field, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field) return schema def gen_general_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, auto_id=False, is_binary=False, dim=ct.default_dim, **kwargs): if is_binary: fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_binary_vec_field(dim=dim)] else: fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field(dim=dim)] schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description, primary_field=primary_field, auto_id=auto_id, **kwargs) return schema def gen_string_pk_default_collection_schema(description=ct.default_desc, primary_field=ct.default_string_field_name, auto_id=False, dim=ct.default_dim, **kwargs): fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(), gen_float_vec_field(dim=dim)] schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description, primary_field=primary_field, auto_id=auto_id, **kwargs) return schema def gen_json_default_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, auto_id=False, dim=ct.default_dim, **kwargs): fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(), gen_float_vec_field(dim=dim)] schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description, primary_field=primary_field, auto_id=auto_id, **kwargs) return schema def gen_multiple_json_default_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, auto_id=False, dim=ct.default_dim, **kwargs): fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(name="json1"), gen_json_field(name="json2"), gen_float_vec_field(dim=dim)] schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description, primary_field=primary_field, auto_id=auto_id, **kwargs) return schema def gen_collection_schema_all_datatype(description=ct.default_desc, primary_field=ct.default_int64_field_name, auto_id=False, dim=ct.default_dim, enable_dynamic_field=False, with_json=True, multiple_dim_array=[], nullable_fields={}, default_value_fields={}, **kwargs): # gen primary key field if default_value_fields.get(ct.default_int64_field_name) is None: int64_field = gen_int64_field() else: int64_field = gen_int64_field(default_value=default_value_fields.get(ct.default_int64_field_name)) if enable_dynamic_field: fields = [gen_int64_field()] else: if default_value_fields.get(ct.default_int32_field_name) is None: int32_field = gen_int32_field(nullable=(ct.default_int32_field_name in nullable_fields)) else: int32_field = gen_int32_field(nullable=(ct.default_int32_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_int32_field_name)) if default_value_fields.get(ct.default_int16_field_name) is None: int16_field = gen_int16_field(nullable=(ct.default_int16_field_name in nullable_fields)) else: int16_field = gen_int16_field(nullable=(ct.default_int16_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_int16_field_name)) if default_value_fields.get(ct.default_int8_field_name) is None: int8_field = gen_int8_field(nullable=(ct.default_int8_field_name in nullable_fields)) else: int8_field = gen_int8_field(nullable=(ct.default_int8_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_int8_field_name)) if default_value_fields.get(ct.default_bool_field_name) is None: bool_field = gen_bool_field(nullable=(ct.default_bool_field_name in nullable_fields)) else: bool_field = gen_bool_field(nullable=(ct.default_bool_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_bool_field_name)) if default_value_fields.get(ct.default_float_field_name) is None: float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields)) else: float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_float_field_name)) if default_value_fields.get(ct.default_double_field_name) is None: double_field = gen_double_field(nullable=(ct.default_double_field_name in nullable_fields)) else: double_field = gen_double_field(nullable=(ct.default_double_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_double_field_name)) if default_value_fields.get(ct.default_string_field_name) is None: string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields)) else: string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_string_field_name)) if default_value_fields.get(ct.default_json_field_name) is None: json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields)) else: json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_json_field_name)) fields = [int64_field, int32_field, int16_field, int8_field, bool_field, float_field, double_field, string_field, json_field] if with_json is False: fields.remove(json_field) if len(multiple_dim_array) == 0: # gen vector field if default_value_fields.get(ct.default_float_vec_field_name) is None: float_vector_field = gen_float_vec_field(dim=dim) else: float_vector_field = gen_float_vec_field(dim=dim, default_value=default_value_fields.get(ct.default_float_vec_field_name)) fields.append(float_vector_field) else: multiple_dim_array.insert(0, dim) for i in range(len(multiple_dim_array)): if ct.append_vector_type[i%3] != DataType.SPARSE_FLOAT_VECTOR: if default_value_fields.get(ct.append_vector_type[i%3]) is None: vector_field = gen_float_vec_field(name=f"multiple_vector_{ct.append_vector_type[i%3].name}", dim=multiple_dim_array[i], vector_data_type=ct.append_vector_type[i%3]) else: vector_field = gen_float_vec_field(name=f"multiple_vector_{ct.append_vector_type[i%3].name}", dim=multiple_dim_array[i], vector_data_type=ct.append_vector_type[i%3], default_value=default_value_fields.get(ct.append_vector_type[i%3].name)) fields.append(vector_field) else: # The field of a sparse vector cannot be dimensioned if default_value_fields.get(ct.default_sparse_vec_field_name) is None: sparse_vector_field = gen_sparse_vec_field(name=f"multiple_vector_{DataType.SPARSE_FLOAT_VECTOR.name}", vector_data_type=DataType.SPARSE_FLOAT_VECTOR) else: sparse_vector_field = gen_sparse_vec_field(name=f"multiple_vector_{DataType.SPARSE_FLOAT_VECTOR.name}", vector_data_type=DataType.SPARSE_FLOAT_VECTOR, default_value=default_value_fields.get(ct.default_sparse_vec_field_name)) fields.append(sparse_vector_field) schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description, primary_field=primary_field, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field, **kwargs) return schema def gen_collection_schema(fields, primary_field=None, description=ct.default_desc, auto_id=False, **kwargs): schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, primary_field=primary_field, description=description, auto_id=auto_id, **kwargs) return schema def gen_default_binary_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, auto_id=False, dim=ct.default_dim, nullable_fields={}, default_value_fields={}, **kwargs): if default_value_fields.get(ct.default_int64_field_name) is None: int64_field = gen_int64_field(nullable=(ct.default_int64_field_name in nullable_fields)) else: int64_field = gen_int64_field(nullable=(ct.default_int64_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_int64_field_name)) if default_value_fields.get(ct.default_float_field_name) is None: float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields)) else: float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_float_field_name)) if default_value_fields.get(ct.default_string_field_name) is None: string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields)) else: string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_string_field_name)) if default_value_fields.get(ct.default_binary_vec_field_name) is None: binary_vec_field = gen_binary_vec_field(dim=dim, nullable=(ct.default_binary_vec_field_name in nullable_fields)) else: binary_vec_field = gen_binary_vec_field(dim=dim, nullable=(ct.default_binary_vec_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_binary_vec_field_name)) fields = [int64_field, float_field, string_field, binary_vec_field] binary_schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description, primary_field=primary_field, auto_id=auto_id, **kwargs) return binary_schema def gen_default_sparse_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, auto_id=False, with_json=False, multiple_dim_array=[], nullable_fields={}, default_value_fields={}, **kwargs): if default_value_fields.get(ct.default_int64_field_name) is None: int64_field = gen_int64_field(nullable=(ct.default_int64_field_name in nullable_fields)) else: int64_field = gen_int64_field(nullable=(ct.default_int64_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_int64_field_name)) if default_value_fields.get(ct.default_float_field_name) is None: float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields)) else: float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_float_field_name)) if default_value_fields.get(ct.default_string_field_name) is None: string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields)) else: string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_string_field_name)) if default_value_fields.get(ct.default_sparse_vec_field_name) is None: sparse_vec_field = gen_sparse_vec_field(nullable=(ct.default_sparse_vec_field_name in nullable_fields)) else: sparse_vec_field = gen_sparse_vec_field(nullable=(ct.default_sparse_vec_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_sparse_vec_field_name)) fields = [int64_field, float_field, string_field, sparse_vec_field] if with_json: if default_value_fields.get(ct.default_json_field_name) is None: json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields)) else: json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields), default_value=default_value_fields.get(ct.default_json_field_name)) fields.insert(-1, json_field) if len(multiple_dim_array) != 0: for i in range(len(multiple_dim_array)): vec_name = ct.default_sparse_vec_field_name + "_" + str(i) vec_field = gen_sparse_vec_field(name=vec_name) fields.append(vec_field) sparse_schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description, primary_field=primary_field, auto_id=auto_id, **kwargs) return sparse_schema def gen_schema_multi_vector_fields(vec_fields): fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field()] fields.extend(vec_fields) primary_field = ct.default_int64_field_name schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=ct.default_desc, primary_field=primary_field, auto_id=False) return schema def gen_schema_multi_string_fields(string_fields): fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field()] fields.extend(string_fields) primary_field = ct.default_int64_field_name schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=ct.default_desc, primary_field=primary_field, auto_id=False) return schema def gen_string(nb): string_values = [str(random.random()) for _ in range(nb)] return string_values def gen_binary_vectors(num, dim): raw_vectors = [] binary_vectors = [] for _ in range(num): raw_vector = [random.randint(0, 1) for _ in range(dim)] raw_vectors.append(raw_vector) # packs a binary-valued array into bits in a unit8 array, and bytes array_of_ints binary_vectors.append(bytes(np.packbits(raw_vector, axis=-1).tolist())) return raw_vectors, binary_vectors def gen_default_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True, random_primary_key=False, multiple_dim_array=[], multiple_vector_field_name=[], vector_data_type=DataType.FLOAT_VECTOR, auto_id=False, primary_field=ct.default_int64_field_name, nullable_fields={}, language=None): if not random_primary_key: int_values = pd.Series(data=[i for i in range(start, start + nb)]) else: int_values = pd.Series(data=random.sample(range(start, start + nb), nb)) float_data = [np.float32(i) for i in range(start, start + nb)] float_values = pd.Series(data=float_data, dtype="float32") if ct.default_float_field_name in nullable_fields: null_number = int(nb*nullable_fields[ct.default_float_field_name]) null_data = [None for _ in range(null_number)] float_data = float_data[:nb-null_number] + null_data log.debug(float_data) float_values = pd.Series(data=float_data, dtype=object) string_data = [str(i) for i in range(start, start + nb)] if language: string_data = [generate_random_sentence(language) for _ in range(nb)] string_values = pd.Series(data=string_data, dtype="string") if ct.default_string_field_name in nullable_fields: null_number = int(nb*nullable_fields[ct.default_string_field_name]) null_data = [None for _ in range(null_number)] string_data = string_data[:nb-null_number] + null_data string_values = pd.Series(data=string_data, dtype=object) json_values = [{"number": i, "float": i*1.0} for i in range(start, start + nb)] if ct.default_json_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_json_field_name]) null_data = [{"number": None, "float": None} for _ in range(null_number)] json_values = json_values[:nb-null_number] + null_data float_vec_values = gen_vectors(nb, dim, vector_data_type=vector_data_type) df = pd.DataFrame({ ct.default_int64_field_name: int_values, ct.default_float_field_name: float_values, ct.default_string_field_name: string_values, ct.default_json_field_name: json_values, ct.default_float_vec_field_name: float_vec_values }) if with_json is False: df.drop(ct.default_json_field_name, axis=1, inplace=True) if auto_id is True: if primary_field == ct.default_int64_field_name: df.drop(ct.default_int64_field_name, axis=1, inplace=True) elif primary_field == ct.default_string_field_name: df.drop(ct.default_string_field_name, axis=1, inplace=True) if len(multiple_dim_array) != 0: if len(multiple_vector_field_name) != len(multiple_dim_array): log.error("multiple vector feature is enabled, please input the vector field name list " "not including the default vector field") assert len(multiple_vector_field_name) == len(multiple_dim_array) for i in range(len(multiple_dim_array)): new_float_vec_values = gen_vectors(nb, multiple_dim_array[i], vector_data_type=vector_data_type) df[multiple_vector_field_name[i]] = new_float_vec_values return df def gen_default_list_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True, random_primary_key=False, multiple_dim_array=[], multiple_vector_field_name=[], vector_data_type=DataType.FLOAT_VECTOR, auto_id=False, primary_field=ct.default_int64_field_name, nullable_fields={}, language=None): insert_list = [] if not random_primary_key: int_values = pd.Series(data=[i for i in range(start, start + nb)]) else: int_values = pd.Series(data=random.sample(range(start, start + nb), nb)) float_data = [np.float32(i) for i in range(start, start + nb)] float_values = pd.Series(data=float_data, dtype="float32") if ct.default_float_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_float_field_name]) null_data = [None for _ in range(null_number)] float_data = float_data[:nb - null_number] + null_data float_values = pd.Series(data=float_data, dtype=object) string_data = [str(i) for i in range(start, start + nb)] if language: string_data = [generate_random_sentence(language) for _ in range(nb)] string_values = pd.Series(data=string_data, dtype="string") if ct.default_string_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_string_field_name]) null_data = [None for _ in range(null_number)] string_data = string_data[:nb - null_number] + null_data string_values = pd.Series(data=string_data, dtype=object) json_values = [{"number": i, "float": i*1.0} for i in range(start, start + nb)] if ct.default_json_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_json_field_name]) null_data = [{"number": None, "float": None} for _ in range(null_number)] json_values = json_values[:nb-null_number] + null_data float_vec_values = gen_vectors(nb, dim, vector_data_type=vector_data_type) insert_list = [int_values, float_values, string_values] if with_json is True: insert_list.append(json_values) insert_list.append(float_vec_values) if auto_id is True: if primary_field == ct.default_int64_field_name: index = 0 elif primary_field == ct.default_string_field_name: index = 2 del insert_list[index] if len(multiple_dim_array) != 0: # if len(multiple_vector_field_name) != len(multiple_dim_array): # log.error("multiple vector feature is enabled, please input the vector field name list " # "not including the default vector field") # assert len(multiple_vector_field_name) == len(multiple_dim_array) for i in range(len(multiple_dim_array)): new_float_vec_values = gen_vectors(nb, multiple_dim_array[i], vector_data_type=vector_data_type) insert_list.append(new_float_vec_values) return insert_list def gen_default_rows_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True, multiple_dim_array=[], multiple_vector_field_name=[], vector_data_type=DataType.FLOAT_VECTOR, auto_id=False, primary_field = ct.default_int64_field_name, nullable_fields={}, language=None): array = [] for i in range(start, start + nb): dict = {ct.default_int64_field_name: i, ct.default_float_field_name: i*1.0, ct.default_string_field_name: str(i), ct.default_json_field_name: {"number": i, "float": i*1.0}, ct.default_float_vec_field_name: gen_vectors(1, dim, vector_data_type=vector_data_type)[0] } if with_json is False: dict.pop(ct.default_json_field_name, None) if language: dict[ct.default_string_field_name] = generate_random_sentence(language) if auto_id is True: if primary_field == ct.default_int64_field_name: dict.pop(ct.default_int64_field_name) elif primary_field == ct.default_string_field_name: dict.pop(ct.default_string_field_name) array.append(dict) if len(multiple_dim_array) != 0: for i in range(len(multiple_dim_array)): dict[multiple_vector_field_name[i]] = gen_vectors(1, multiple_dim_array[i], vector_data_type=vector_data_type)[0] if ct.default_int64_field_name in nullable_fields: null_number = int(nb*nullable_fields[ct.default_int64_field_name]) for single_dict in array[-null_number:]: single_dict[ct.default_int64_field_name] = None if ct.default_float_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_float_field_name]) for single_dict in array[-null_number:]: single_dict[ct.default_float_field_name] = None if ct.default_string_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_string_field_name]) for single_dict in array[-null_number:]: single_dict[ct.default_string_field_name] = None if ct.default_json_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_json_field_name]) for single_dict in array[-null_number:]: single_dict[ct.default_string_field_name] = {"number": None, "float": None} log.debug("generated default row data") return array def gen_json_data_for_diff_json_types(nb=ct.default_nb, start=0, json_type="json_embedded_object"): """ Method: gen json data for different json types. Refer to RFC7159 """ if json_type == "json_embedded_object": # a json object with an embedd json object return [{json_type: {"number": i, "level2": {"level2_number": i, "level2_float": i*1.0, "level2_str": str(i), "level2_array": [i for i in range(i, i + 10)]}, "float": i*1.0}, "str": str(i), "array": [i for i in range(i, i + 10)], "bool": bool(i)} for i in range(start, start + nb)] if json_type == "json_objects_array": # a json-objects array with 2 json objects return [[{"number": i, "level2": {"level2_number": i, "level2_float": i*1.0, "level2_str": str(i)}, "float": i*1.0, "str": str(i)}, {"number": i, "level2": {"level2_number": i, "level2_float": i*1.0, "level2_str": str(i)}, "float": i*1.0, "str": str(i)} ] for i in range(start, start + nb)] if json_type == "json_array": # single array as json value return [[i for i in range(j, j + 10)] for j in range(start, start + nb)] if json_type == "json_int": # single int as json value return [i for i in range(start, start + nb)] if json_type == "json_float": # single float as json value return [i*1.0 for i in range(start, start + nb)] if json_type == "json_string": # single string as json value return [str(i) for i in range(start, start + nb)] if json_type == "json_bool": # single bool as json value return [bool(i) for i in range(start, start + nb)] else: return [] def gen_default_data_for_upsert(nb=ct.default_nb, dim=ct.default_dim, start=0, size=10000): int_values = pd.Series(data=[i for i in range(start, start + nb)]) float_values = pd.Series(data=[np.float32(i + size) for i in range(start, start + nb)], dtype="float32") string_values = pd.Series(data=[str(i + size) for i in range(start, start + nb)], dtype="string") json_values = [{"number": i, "string": str(i)} for i in range(start, start + nb)] float_vec_values = gen_vectors(nb, dim) df = pd.DataFrame({ ct.default_int64_field_name: int_values, ct.default_float_field_name: float_values, ct.default_string_field_name: string_values, ct.default_json_field_name: json_values, ct.default_float_vec_field_name: float_vec_values }) return df, float_values def gen_array_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0, auto_id=False, array_length=ct.default_max_capacity, with_json=False, random_primary_key=False): if not random_primary_key: int_values = pd.Series(data=[i for i in range(start, start + nb)]) else: int_values = pd.Series(data=random.sample(range(start, start + nb), nb)) float_vec_values = gen_vectors(nb, dim) json_values = [{"number": i, "float": i * 1.0} for i in range(start, start + nb)] int32_values = pd.Series(data=[[np.int32(j) for j in range(i, i + array_length)] for i in range(start, start + nb)]) float_values = pd.Series(data=[[np.float32(j) for j in range(i, i + array_length)] for i in range(start, start + nb)]) string_values = pd.Series(data=[[str(j) for j in range(i, i + array_length)] for i in range(start, start + nb)]) df = pd.DataFrame({ ct.default_int64_field_name: int_values, ct.default_float_vec_field_name: float_vec_values, ct.default_json_field_name: json_values, ct.default_int32_array_field_name: int32_values, ct.default_float_array_field_name: float_values, ct.default_string_array_field_name: string_values, }) if with_json is False: df.drop(ct.default_json_field_name, axis=1, inplace=True) if auto_id: df.drop(ct.default_int64_field_name, axis=1, inplace=True) return df def gen_dataframe_multi_vec_fields(vec_fields, nb=ct.default_nb): """ gen dataframe data for fields: int64, float, float_vec and vec_fields :param nb: num of entities, default default_nb :param vec_fields: list of FieldSchema :return: dataframe """ int_values = pd.Series(data=[i for i in range(0, nb)]) float_values = pd.Series(data=[float(i) for i in range(nb)], dtype="float32") string_values = pd.Series(data=[str(i) for i in range(nb)], dtype="string") df = pd.DataFrame({ ct.default_int64_field_name: int_values, ct.default_float_field_name: float_values, ct.default_string_field_name: string_values, ct.default_float_vec_field_name: gen_vectors(nb, ct.default_dim) }) for field in vec_fields: dim = field.params['dim'] if field.dtype == DataType.FLOAT_VECTOR: vec_values = gen_vectors(nb, dim) elif field.dtype == DataType.BINARY_VECTOR: vec_values = gen_binary_vectors(nb, dim)[1] df[field.name] = vec_values return df def gen_dataframe_multi_string_fields(string_fields, nb=ct.default_nb): """ gen dataframe data for fields: int64, float, float_vec and vec_fields :param nb: num of entities, default default_nb :param vec_fields: list of FieldSchema :return: dataframe """ int_values = pd.Series(data=[i for i in range(0, nb)]) float_values = pd.Series(data=[float(i) for i in range(nb)], dtype="float32") string_values = pd.Series(data=[str(i) for i in range(nb)], dtype="string") df = pd.DataFrame({ ct.default_int64_field_name: int_values, ct.default_float_field_name: float_values, ct.default_string_field_name: string_values, ct.default_float_vec_field_name: gen_vectors(nb, ct.default_dim) }) for field in string_fields: if field.dtype == DataType.VARCHAR: string_values = gen_string(nb) df[field.name] = string_values return df def gen_dataframe_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True, auto_id=False, random_primary_key=False, multiple_dim_array=[], multiple_vector_field_name=[], primary_field=ct.default_int64_field_name): if not random_primary_key: int64_values = pd.Series(data=[i for i in range(start, start + nb)]) else: int64_values = pd.Series(data=random.sample(range(start, start + nb), nb)) int32_values = pd.Series(data=[np.int32(i) for i in range(start, start + nb)], dtype="int32") int16_values = pd.Series(data=[np.int16(i) for i in range(start, start + nb)], dtype="int16") int8_values = pd.Series(data=[np.int8(i) for i in range(start, start + nb)], dtype="int8") bool_values = pd.Series(data=[np.bool_(i) for i in range(start, start + nb)], dtype="bool") float_values = pd.Series(data=[np.float32(i) for i in range(start, start + nb)], dtype="float32") double_values = pd.Series(data=[np.double(i) for i in range(start, start + nb)], dtype="double") string_values = pd.Series(data=[str(i) for i in range(start, start + nb)], dtype="string") json_values = [{"number": i, "string": str(i), "bool": bool(i), "list": [j for j in range(i, i + ct.default_json_list_length)]} for i in range(start, start + nb)] float_vec_values = gen_vectors(nb, dim) df = pd.DataFrame({ ct.default_int64_field_name: int64_values, ct.default_int32_field_name: int32_values, ct.default_int16_field_name: int16_values, ct.default_int8_field_name: int8_values, ct.default_bool_field_name: bool_values, ct.default_float_field_name: float_values, ct.default_double_field_name: double_values, ct.default_string_field_name: string_values, ct.default_json_field_name: json_values }) if len(multiple_dim_array) == 0: df[ct.default_float_vec_field_name] = float_vec_values else: for i in range(len(multiple_dim_array)): df[multiple_vector_field_name[i]] = gen_vectors(nb, multiple_dim_array[i], ct.append_vector_type[i%3]) if with_json is False: df.drop(ct.default_json_field_name, axis=1, inplace=True) if auto_id: if primary_field == ct.default_int64_field_name: df.drop(ct.default_int64_field_name, axis=1, inplace=True) elif primary_field == ct.default_string_field_name: df.drop(ct.default_string_field_name, axis=1, inplace=True) log.debug("generated data completed") return df def gen_general_list_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True, auto_id=False, random_primary_key=False, multiple_dim_array=[], multiple_vector_field_name=[], primary_field=ct.default_int64_field_name, nullable_fields={}, language=None): if not random_primary_key: int64_values = pd.Series(data=[i for i in range(start, start + nb)]) else: int64_values = pd.Series(data=random.sample(range(start, start + nb), nb)) int32_data = [np.int32(i) for i in range(start, start + nb)] int32_values = pd.Series(data=int32_data, dtype="int32") if ct.default_int32_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_int32_field_name]) null_data = [None for _ in range(null_number)] int32_data = int32_data[:nb - null_number] + null_data int32_values = pd.Series(data=int32_data, dtype=object) int16_data = [np.int16(i) for i in range(start, start + nb)] int16_values = pd.Series(data=int16_data, dtype="int16") if ct.default_int16_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_int16_field_name]) null_data = [None for _ in range(null_number)] int16_data = int16_data[:nb - null_number] + null_data int16_values = pd.Series(data=int16_data, dtype=object) int8_data = [np.int8(i) for i in range(start, start + nb)] int8_values = pd.Series(data=int8_data, dtype="int8") if ct.default_int8_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_int8_field_name]) null_data = [None for _ in range(null_number)] int8_data = int8_data[:nb - null_number] + null_data int8_values = pd.Series(data=int8_data, dtype=object) bool_data = [np.bool_(i) for i in range(start, start + nb)] bool_values = pd.Series(data=bool_data, dtype="bool") if ct.default_bool_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_bool_field_name]) null_data = [None for _ in range(null_number)] bool_data = bool_data[:nb - null_number] + null_data bool_values = pd.Series(data=bool_data, dtype="bool") float_data = [np.float32(i) for i in range(start, start + nb)] float_values = pd.Series(data=float_data, dtype="float32") if ct.default_float_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_float_field_name]) null_data = [None for _ in range(null_number)] float_data = float_data[:nb - null_number] + null_data float_values = pd.Series(data=float_data, dtype=object) double_data = [np.double(i) for i in range(start, start + nb)] double_values = pd.Series(data=double_data, dtype="double") if ct.default_double_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_double_field_name]) null_data = [None for _ in range(null_number)] double_data = double_data[:nb - null_number] + null_data double_values = pd.Series(data=double_data, dtype=object) string_data = [str(i) for i in range(start, start + nb)] if language: string_data = [generate_random_sentence(language) for _ in range(nb)] string_values = pd.Series(data=string_data, dtype="string") if ct.default_string_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_string_field_name]) null_data = [None for _ in range(null_number)] string_data = string_data[:nb - null_number] + null_data string_values = pd.Series(data=string_data, dtype=object) json_values = [{"number": i, "string": str(i), "bool": bool(i), "list": [j for j in range(i, i + ct.default_json_list_length)]} for i in range(start, start + nb)] if ct.default_json_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_json_field_name]) null_data = [{"number": None, "string": None, "bool": None, "list": [None for _ in range(i, i + ct.default_json_list_length)]} for i in range(null_number)] json_values = json_values[:nb - null_number] + null_data float_vec_values = gen_vectors(nb, dim) insert_list = [int64_values, int32_values, int16_values, int8_values, bool_values, float_values, double_values, string_values, json_values] if len(multiple_dim_array) == 0: insert_list.append(float_vec_values) else: for i in range(len(multiple_dim_array)): insert_list.append(gen_vectors(nb, multiple_dim_array[i], ct.append_vector_type[i%3])) if with_json is False: # index = insert_list.index(json_values) del insert_list[8] if auto_id: if primary_field == ct.default_int64_field_name: index = insert_list.index(int64_values) elif primary_field == ct.default_string_field_name: index = insert_list.index(string_values) del insert_list[index] log.debug("generated data completed") return insert_list def gen_default_rows_data_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True, multiple_dim_array=[], multiple_vector_field_name=[], partition_id=0, auto_id=False, primary_field=ct.default_int64_field_name, language=None): array = [] for i in range(start, start + nb): dict = {ct.default_int64_field_name: i, ct.default_int32_field_name: i, ct.default_int16_field_name: i, ct.default_int8_field_name: i, ct.default_bool_field_name: bool(i), ct.default_float_field_name: i*1.0, ct.default_double_field_name: i * 1.0, ct.default_string_field_name: str(i), ct.default_json_field_name: {"number": i, "string": str(i), "bool": bool(i), "list": [j for j in range(i, i + ct.default_json_list_length)]} } if with_json is False: dict.pop(ct.default_json_field_name, None) if language: dict[ct.default_string_field_name] = generate_random_sentence(language) if auto_id is True: if primary_field == ct.default_int64_field_name: dict.pop(ct.default_int64_field_name, None) elif primary_field == ct.default_string_field_name: dict.pop(ct.default_string_field_name, None) array.append(dict) if len(multiple_dim_array) == 0: dict[ct.default_float_vec_field_name] = gen_vectors(1, dim)[0] else: for i in range(len(multiple_dim_array)): dict[multiple_vector_field_name[i]] = gen_vectors(nb, multiple_dim_array[i], ct.append_vector_type[i])[0] if len(multiple_dim_array) != 0: with open(ct.rows_all_data_type_file_path + f'_{partition_id}' + f'_dim{dim}.txt', 'wb') as json_file: pickle.dump(array, json_file) log.info("generated rows data") return array def gen_default_binary_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0, auto_id=False, primary_field=ct.default_int64_field_name, nullable_fields={}, language=None): int_data = [i for i in range(start, start + nb)] int_values = pd.Series(data=int_data) if ct.default_int64_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_int64_field_name]) null_data = [None for _ in range(null_number)] int_data = int_data[:nb - null_number] + null_data int_values = pd.Series(data=int_data, dtype=object) float_data = [np.float32(i) for i in range(start, start + nb)] float_values = pd.Series(data=float_data, dtype="float32") if ct.default_float_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_float_field_name]) null_data = [None for _ in range(null_number)] float_data = float_data[:nb - null_number] + null_data float_values = pd.Series(data=float_data, dtype=object) string_data = [str(i) for i in range(start, start + nb)] if language: string_data = [generate_random_sentence(language) for _ in range(nb)] string_values = pd.Series(data=string_data, dtype="string") if ct.default_string_field_name in nullable_fields: null_number = int(nb * nullable_fields[ct.default_string_field_name]) null_data = [None for _ in range(null_number)] string_data = string_data[:nb - null_number] + null_data string_values = pd.Series(data=string_data, dtype=object) binary_raw_values, binary_vec_values = gen_binary_vectors(nb, dim) df = pd.DataFrame({ ct.default_int64_field_name: int_values, ct.default_float_field_name: float_values, ct.default_string_field_name: string_values, ct.default_binary_vec_field_name: binary_vec_values }) if auto_id is True: if primary_field == ct.default_int64_field_name: df.drop(ct.default_int64_field_name, axis=1, inplace=True) elif primary_field == ct.default_string_field_name: df.drop(ct.default_string_field_name, axis=1, inplace=True) return df, binary_raw_values # # def gen_default_list_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True): # int_values = [i for i in range(start, start + nb)] # float_values = [np.float32(i) for i in range(start, start + nb)] # string_values = [str(i) for i in range(start, start + nb)] # json_values = [{"number": i, "string": str(i), "bool": bool(i), "list": [j for j in range(0, i)]} # for i in range(start, start + nb)] # float_vec_values = gen_vectors(nb, dim) # if with_json is False: # data = [int_values, float_values, string_values, float_vec_values] # else: # data = [int_values, float_values, string_values, json_values, float_vec_values] # return data def gen_default_list_sparse_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=False): int_values = [i for i in range(start, start + nb)] float_values = [np.float32(i) for i in range(start, start + nb)] string_values = [str(i) for i in range(start, start + nb)] json_values = [{"number": i, "string": str(i), "bool": bool(i), "list": [j for j in range(0, i)]} for i in range(start, start + nb)] sparse_vec_values = gen_vectors(nb, dim, vector_data_type=DataType.SPARSE_FLOAT_VECTOR) if with_json: data = [int_values, float_values, string_values, json_values, sparse_vec_values] else: data = [int_values, float_values, string_values, sparse_vec_values] return data def gen_default_list_data_for_bulk_insert(nb=ct.default_nb, varchar_len=2000, with_varchar_field=True): str_value = gen_str_by_length(length=varchar_len) int_values = [i for i in range(nb)] float_values = [np.float32(i) for i in range(nb)] string_values = [f"{str(i)}_{str_value}" for i in range(nb)] # in case of large nb, float_vec_values will be too large in memory # then generate float_vec_values in each loop instead of generating all at once during generate npy or json file float_vec_values = [] # placeholder for float_vec data = [int_values, float_values, string_values, float_vec_values] if with_varchar_field is False: data = [int_values, float_values, float_vec_values] return data def prepare_bulk_insert_data(schema=None, nb=ct.default_nb, file_type="npy", minio_endpoint="127.0.0.1:9000", bucket_name="milvus-bucket"): schema = gen_default_collection_schema() if schema is None else schema dim = get_dim_by_schema(schema=schema) log.info(f"start to generate raw data for bulk insert") t0 = time.time() data = get_column_data_by_schema(schema=schema, nb=nb, skip_vectors=True) log.info(f"generate raw data for bulk insert cost {time.time() - t0} s") data_dir = "/tmp/bulk_insert_data" Path(data_dir).mkdir(parents=True, exist_ok=True) log.info(f"schema:{schema}, nb:{nb}, file_type:{file_type}, minio_endpoint:{minio_endpoint}, bucket_name:{bucket_name}") files = [] log.info(f"generate {file_type} files for bulk insert") if file_type == "json": files = gen_json_files_for_bulk_insert(data, schema, data_dir) if file_type == "npy": files = gen_npy_files_for_bulk_insert(data, schema, data_dir) log.info(f"generated {len(files)} {file_type} files for bulk insert, cost {time.time() - t0} s") log.info("upload file to minio") client = Minio(minio_endpoint, access_key="minioadmin", secret_key="minioadmin", secure=False) for file_name in files: file_size = os.path.getsize(os.path.join(data_dir, file_name)) / 1024 / 1024 t0 = time.time() client.fput_object(bucket_name, file_name, os.path.join(data_dir, file_name)) log.info(f"upload file {file_name} to minio, size: {file_size:.2f} MB, cost {time.time() - t0:.2f} s") return files def get_column_data_by_schema(nb=ct.default_nb, schema=None, skip_vectors=False, start=None): if schema is None: schema = gen_default_collection_schema() fields = schema.fields fields_not_auto_id = [] for field in fields: if not field.auto_id: fields_not_auto_id.append(field) data = [] for field in fields_not_auto_id: if field.dtype == DataType.FLOAT_VECTOR and skip_vectors is True: tmp = [] else: tmp = gen_data_by_collection_field(field, nb=nb, start=start) data.append(tmp) return data def gen_row_data_by_schema(nb=ct.default_nb, schema=None, start=None): if schema is None: schema = gen_default_collection_schema() # ignore auto id field and the fields in function output func_output_fields = [] if hasattr(schema, "functions"): functions = schema.functions for func in functions: output_field_names = func.output_field_names func_output_fields.extend(output_field_names) func_output_fields = list(set(func_output_fields)) fields = schema.fields fields_needs_data = [] for field in fields: if field.auto_id: continue if field.name in func_output_fields: continue fields_needs_data.append(field) data = [] for i in range(nb): tmp = {} for field in fields_needs_data: tmp[field.name] = gen_data_by_collection_field(field) if start is not None and field.dtype == DataType.INT64: tmp[field.name] = start start += 1 if field.nullable is True: # 10% percent of data is null if random.random() < 0.1: tmp[field.name] = None data.append(tmp) return data def get_fields_map(schema=None): if schema is None: schema = gen_default_collection_schema() fields = schema.fields fields_map = {} for field in fields: fields_map[field.name] = field.dtype return fields_map def get_int64_field_name(schema=None): if schema is None: schema = gen_default_collection_schema() fields = schema.fields for field in fields: if field.dtype == DataType.INT64: return field.name return None def get_varchar_field_name(schema=None): if schema is None: schema = gen_default_collection_schema() fields = schema.fields for field in fields: if field.dtype == DataType.VARCHAR: return field.name return None def get_text_field_name(schema=None): if schema is None: schema = gen_default_collection_schema() if not hasattr(schema, "functions"): return [] functions = schema.functions bm25_func = [func for func in functions if func.type == FunctionType.BM25] bm25_inputs = [] for func in bm25_func: bm25_inputs.extend(func.input_field_names) bm25_inputs = list(set(bm25_inputs)) return bm25_inputs def get_text_match_field_name(schema=None): if schema is None: schema = gen_default_collection_schema() text_match_field_list = [] fields = schema.fields for field in fields: if field.dtype == DataType.VARCHAR and field.params.get("enable_match", False): text_match_field_list.append(field.name) return text_match_field_list def get_float_field_name(schema=None): if schema is None: schema = gen_default_collection_schema() fields = schema.fields for field in fields: if field.dtype == DataType.FLOAT or field.dtype == DataType.DOUBLE: return field.name return None def get_float_vec_field_name(schema=None): if schema is None: schema = gen_default_collection_schema() fields = schema.fields for field in fields: if field.dtype == DataType.FLOAT_VECTOR: return field.name return None def get_float_vec_field_name_list(schema=None): vec_fields = [] if schema is None: schema = gen_default_collection_schema() fields = schema.fields for field in fields: if field.dtype in [DataType.FLOAT_VECTOR, DataType.FLOAT16_VECTOR, DataType.BFLOAT16_VECTOR]: vec_fields.append(field.name) return vec_fields def get_scalar_field_name_list(schema=None): vec_fields = [] if schema is None: schema = gen_default_collection_schema() fields = schema.fields for field in fields: if field.dtype in [DataType.BOOL, DataType.INT8, DataType.INT16, DataType.INT32, DataType.INT64, DataType.FLOAT, DataType.DOUBLE, DataType.VARCHAR]: vec_fields.append(field.name) return vec_fields def get_json_field_name_list(schema=None): json_fields = [] if schema is None: schema = gen_default_collection_schema() fields = schema.fields for field in fields: if field.dtype == DataType.JSON: json_fields.append(field.name) return json_fields def get_binary_vec_field_name(schema=None): if schema is None: schema = gen_default_collection_schema() fields = schema.fields for field in fields: if field.dtype == DataType.BINARY_VECTOR: return field.name return None def get_binary_vec_field_name_list(schema=None): vec_fields = [] if schema is None: schema = gen_default_collection_schema() fields = schema.fields for field in fields: if field.dtype in [DataType.BINARY_VECTOR]: vec_fields.append(field.name) return vec_fields def get_bm25_vec_field_name_list(schema=None): if not hasattr(schema, "functions"): return [] functions = schema.functions bm25_func = [func for func in functions if func.type == FunctionType.BM25] bm25_outputs = [] for func in bm25_func: bm25_outputs.extend(func.output_field_names) bm25_outputs = list(set(bm25_outputs)) return bm25_outputs def get_dim_by_schema(schema=None): if schema is None: schema = gen_default_collection_schema() fields = schema.fields for field in fields: if field.dtype == DataType.FLOAT_VECTOR or field.dtype == DataType.BINARY_VECTOR: dim = field.params['dim'] return dim return None def gen_varchar_data(length: int, nb: int, text_mode=False): if text_mode: return [fake.text() for _ in range(nb)] else: return ["".join([chr(random.randint(97, 122)) for _ in range(length)]) for _ in range(nb)] def gen_data_by_collection_field(field, nb=None, start=None): # if nb is None, return one data, else return a list of data nullable = field.nullable if nullable is True: if random.random() < 0.1: return None data_type = field.dtype enable_analyzer = field.params.get("enable_analyzer", False) if data_type == DataType.BOOL: if nb is None: return random.choice([True, False]) return [random.choice([True, False]) for _ in range(nb)] if data_type == DataType.INT8: if nb is None: return random.randint(-128, 127) return [random.randint(-128, 127) for _ in range(nb)] if data_type == DataType.INT16: if nb is None: return random.randint(-32768, 32767) return [random.randint(-32768, 32767) for _ in range(nb)] if data_type == DataType.INT32: if nb is None: return random.randint(-2147483648, 2147483647) return [random.randint(-2147483648, 2147483647) for _ in range(nb)] if data_type == DataType.INT64: if nb is None: return random.randint(-9223372036854775808, 9223372036854775807) if start is not None: return [i for i in range(start, start+nb)] return [random.randint(-9223372036854775808, 9223372036854775807) for _ in range(nb)] if data_type == DataType.FLOAT: if nb is None: return np.float32(random.random()) return [np.float32(random.random()) for _ in range(nb)] if data_type == DataType.DOUBLE: if nb is None: return np.float64(random.random()) return [np.float64(random.random()) for _ in range(nb)] if data_type == DataType.VARCHAR: max_length = field.params['max_length'] max_length = min(20, max_length-1) length = random.randint(0, max_length) if nb is None: return gen_varchar_data(length=length, nb=1, text_mode=enable_analyzer)[0] return gen_varchar_data(length=length, nb=nb, text_mode=enable_analyzer) if data_type == DataType.JSON: if nb is None: return {"name": fake.name(), "address": fake.address(), "count": random.randint(0, 100)} data = [{"name": str(i), "address": i, "count": random.randint(0, 100)} for i in range(nb)] return data if data_type == DataType.FLOAT_VECTOR: dim = field.params['dim'] if nb is None: return [random.random() for i in range(dim)] return [[random.random() for i in range(dim)] for _ in range(nb)] if data_type == DataType.BFLOAT16_VECTOR: dim = field.params['dim'] if nb is None: return RNG.uniform(size=dim).astype(bfloat16) return [RNG.uniform(size=dim).astype(bfloat16) for _ in range(int(nb))] # if nb is None: # raw_vector = [random.random() for _ in range(dim)] # bf16_vector = np.array(raw_vector, dtype=bfloat16).view(np.uint8).tolist() # return bytes(bf16_vector) # bf16_vectors = [] # for i in range(nb): # raw_vector = [random.random() for _ in range(dim)] # bf16_vector = np.array(raw_vector, dtype=bfloat16).view(np.uint8).tolist() # bf16_vectors.append(bytes(bf16_vector)) # return bf16_vectors if data_type == DataType.FLOAT16_VECTOR: dim = field.params['dim'] if nb is None: return np.array([random.random() for _ in range(int(dim))], dtype=np.float16) return [np.array([random.random() for _ in range(int(dim))], dtype=np.float16) for _ in range(int(nb))] if data_type == DataType.BINARY_VECTOR: dim = field.params['dim'] if nb is None: raw_vector = [random.randint(0, 1) for _ in range(dim)] binary_byte = bytes(np.packbits(raw_vector, axis=-1).tolist()) return binary_byte return [bytes(np.packbits([random.randint(0, 1) for _ in range(dim)], axis=-1).tolist()) for _ in range(nb)] if data_type == DataType.SPARSE_FLOAT_VECTOR: if nb is None: return gen_sparse_vectors(nb=1)[0] return gen_sparse_vectors(nb=nb) if data_type == DataType.ARRAY: max_capacity = field.params['max_capacity'] element_type = field.element_type if element_type == DataType.INT8: if nb is None: return [random.randint(-128, 127) for _ in range(max_capacity)] return [[random.randint(-128, 127) for _ in range(max_capacity)] for _ in range(nb)] if element_type == DataType.INT16: if nb is None: return [random.randint(-32768, 32767) for _ in range(max_capacity)] return [[random.randint(-32768, 32767) for _ in range(max_capacity)] for _ in range(nb)] if element_type == DataType.INT32: if nb is None: return [random.randint(-2147483648, 2147483647) for _ in range(max_capacity)] return [[random.randint(-2147483648, 2147483647) for _ in range(max_capacity)] for _ in range(nb)] if element_type == DataType.INT64: if nb is None: return [random.randint(-9223372036854775808, 9223372036854775807) for _ in range(max_capacity)] return [[random.randint(-9223372036854775808, 9223372036854775807) for _ in range(max_capacity)] for _ in range(nb)] if element_type == DataType.BOOL: if nb is None: return [random.choice([True, False]) for _ in range(max_capacity)] return [[random.choice([True, False]) for _ in range(max_capacity)] for _ in range(nb)] if element_type == DataType.FLOAT: if nb is None: return [np.float32(random.random()) for _ in range(max_capacity)] return [[np.float32(random.random()) for _ in range(max_capacity)] for _ in range(nb)] if element_type == DataType.DOUBLE: if nb is None: return [np.float64(random.random()) for _ in range(max_capacity)] return [[np.float64(random.random()) for _ in range(max_capacity)] for _ in range(nb)] if element_type == DataType.VARCHAR: max_length = field.params['max_length'] max_length = min(20, max_length - 1) length = random.randint(0, max_length) if nb is None: return ["".join([chr(random.randint(97, 122)) for _ in range(length)]) for _ in range(max_capacity)] return [["".join([chr(random.randint(97, 122)) for _ in range(length)]) for _ in range(max_capacity)] for _ in range(nb)] return None def gen_data_by_collection_schema(schema, nb, r=0): """ gen random data by collection schema, regardless of primary key or auto_id vector type only support for DataType.FLOAT_VECTOR """ data = [] start_uid = r * nb fields = schema.fields for field in fields: data.append(gen_data_by_collection_field(field, nb, start_uid)) return data def gen_varchar_values(nb: int, length: int = 0): return ["".join([chr(random.randint(97, 122)) for _ in range(length)]) for _ in range(nb)] def gen_values(schema: CollectionSchema, nb, start_id=0, default_values: dict = {}): """ generate default value according to the collection fields, which can replace the value of the specified field """ data = [] for field in schema.fields: default_value = default_values.get(field.name, None) if default_value is not None: data.append(default_value) elif field.auto_id is False: data.append(gen_data_by_collection_field(field, nb, start_id)) return data def gen_field_values(schema: CollectionSchema, nb, start_id=0, default_values: dict = {}) -> dict: """ generate default value according to the collection fields, which can replace the value of the specified field return: : """ data = {} for field in schema.fields: default_value = default_values.get(field.name, None) if default_value is not None: data[field.name] = default_value elif field.auto_id is False: data[field.name] = gen_data_by_collection_field(field, nb, start_id * nb) return data def gen_json_files_for_bulk_insert(data, schema, data_dir): for d in data: if len(d) > 0: nb = len(d) dim = get_dim_by_schema(schema) vec_field_name = get_float_vec_field_name(schema) fields_name = [field.name for field in schema.fields] # get vec field index vec_field_index = fields_name.index(vec_field_name) uuid_str = str(uuid.uuid4()) log.info(f"file dir name: {uuid_str}") file_name = f"{uuid_str}/bulk_insert_data_source_dim_{dim}_nb_{nb}.json" files = [file_name] data_source = os.path.join(data_dir, file_name) Path(data_source).parent.mkdir(parents=True, exist_ok=True) log.info(f"file name: {data_source}") with open(data_source, "w") as f: f.write("{") f.write("\n") f.write('"rows":[') f.write("\n") for i in range(nb): entity_value = [None for _ in range(len(fields_name))] for j in range(len(data)): if j == vec_field_index: entity_value[j] = [random.random() for _ in range(dim)] else: entity_value[j] = data[j][i] entity = dict(zip(fields_name, entity_value)) f.write(json.dumps(entity, indent=4, default=to_serializable)) if i != nb - 1: f.write(",") f.write("\n") f.write("]") f.write("\n") f.write("}") return files def gen_npy_files_for_bulk_insert(data, schema, data_dir): for d in data: if len(d) > 0: nb = len(d) dim = get_dim_by_schema(schema) vec_field_name = get_float_vec_field_name(schema) fields_name = [field.name for field in schema.fields] files = [] uuid_str = uuid.uuid4() for field in fields_name: files.append(f"{uuid_str}/{field}.npy") for i, file in enumerate(files): data_source = os.path.join(data_dir, file) # mkdir for npy file Path(data_source).parent.mkdir(parents=True, exist_ok=True) log.info(f"save file {data_source}") if vec_field_name in file: log.info(f"generate {nb} vectors with dim {dim} for {data_source}") with NpyAppendArray(data_source, "wb") as npaa: for j in range(nb): vector = np.array([[random.random() for _ in range(dim)]]) npaa.append(vector) elif isinstance(data[i][0], dict): tmp = [] for d in data[i]: tmp.append(json.dumps(d)) data[i] = tmp np.save(data_source, np.array(data[i])) else: np.save(data_source, np.array(data[i])) return files def gen_default_tuple_data(nb=ct.default_nb, dim=ct.default_dim): int_values = [i for i in range(nb)] float_values = [np.float32(i) for i in range(nb)] string_values = [str(i) for i in range(nb)] float_vec_values = gen_vectors(nb, dim) data = (int_values, float_values, string_values, float_vec_values) return data def gen_numpy_data(nb=ct.default_nb, dim=ct.default_dim): int_values = np.arange(nb, dtype='int64') float_values = np.arange(nb, dtype='float32') string_values = [np.str_(i) for i in range(nb)] json_values = [{"number": i, "string": str(i), "bool": bool(i), "list": [j for j in range(i, i + ct.default_json_list_length)]} for i in range(nb)] float_vec_values = gen_vectors(nb, dim) data = [int_values, float_values, string_values, json_values, float_vec_values] return data def gen_default_binary_list_data(nb=ct.default_nb, dim=ct.default_dim): int_values = [i for i in range(nb)] float_values = [np.float32(i) for i in range(nb)] string_values = [str(i) for i in range(nb)] binary_raw_values, binary_vec_values = gen_binary_vectors(nb, dim) data = [int_values, float_values, string_values, binary_vec_values] return data, binary_raw_values def gen_autoindex_params(): index_params = [ {}, {"metric_type": "IP"}, {"metric_type": "L2"}, {"metric_type": "COSINE"}, {"index_type": "AUTOINDEX"}, {"index_type": "AUTOINDEX", "metric_type": "L2"}, {"index_type": "AUTOINDEX", "metric_type": "COSINE"}, {"index_type": "IVF_FLAT", "metric_type": "L2", "nlist": "1024", "m": "100"}, {"index_type": "DISKANN", "metric_type": "L2"}, {"index_type": "IVF_PQ", "nlist": "128", "m": "16", "nbits": "8", "metric_type": "IP"}, {"index_type": "IVF_SQ8", "nlist": "128", "metric_type": "COSINE"} ] return index_params def gen_invalid_field_types(): field_types = [ 6, 1.0, [[]], {}, (), "", "a" ] return field_types def gen_invalid_search_params_type(): invalid_search_key = 100 search_params = [] for index_type in ct.all_index_types: if index_type == "FLAT": continue # search_params.append({"index_type": index_type, "search_params": {"invalid_key": invalid_search_key}}) if index_type in ["IVF_FLAT", "IVF_SQ8", "IVF_PQ", "BIN_FLAT", "BIN_IVF_FLAT"]: for nprobe in ct.get_invalid_ints: ivf_search_params = {"index_type": index_type, "search_params": {"nprobe": nprobe}} search_params.append(ivf_search_params) elif index_type in ["HNSW"]: for ef in ct.get_invalid_ints: hnsw_search_param = {"index_type": index_type, "search_params": {"ef": ef}} search_params.append(hnsw_search_param) elif index_type == "ANNOY": for search_k in ct.get_invalid_ints: if isinstance(search_k, int): continue annoy_search_param = {"index_type": index_type, "search_params": {"search_k": search_k}} search_params.append(annoy_search_param) elif index_type == "SCANN": for reorder_k in ct.get_invalid_ints: if isinstance(reorder_k, int): continue scann_search_param = {"index_type": index_type, "search_params": {"nprobe": 8, "reorder_k": reorder_k}} search_params.append(scann_search_param) elif index_type == "DISKANN": for search_list in ct.get_invalid_ints[1:]: diskann_search_param = {"index_type": index_type, "search_params": {"search_list": search_list}} search_params.append(diskann_search_param) return search_params def gen_search_param(index_type, metric_type="L2"): search_params = [] if index_type in ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ", "GPU_IVF_FLAT", "GPU_IVF_PQ"]: if index_type in ["GPU_FLAT"]: ivf_search_params = {"metric_type": metric_type, "params": {}} search_params.append(ivf_search_params) else: for nprobe in [64]: ivf_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}} search_params.append(ivf_search_params) elif index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]: if metric_type not in ct.binary_metrics: log.error("Metric type error: binary index only supports distance type in (%s)" % ct.binary_metrics) # default metric type for binary index metric_type = "JACCARD" for nprobe in [64, 128]: binary_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}} search_params.append(binary_search_params) elif index_type in ["HNSW"]: for ef in [64, 1500, 32768]: hnsw_search_param = {"metric_type": metric_type, "params": {"ef": ef}} search_params.append(hnsw_search_param) elif index_type == "ANNOY": for search_k in [1000, 5000]: annoy_search_param = {"metric_type": metric_type, "params": {"search_k": search_k}} search_params.append(annoy_search_param) elif index_type == "SCANN": for reorder_k in [1200, 3000]: scann_search_param = {"metric_type": metric_type, "params": {"nprobe": 64, "reorder_k": reorder_k}} search_params.append(scann_search_param) elif index_type == "DISKANN": for search_list in [20, 300, 1500]: diskann_search_param = {"metric_type": metric_type, "params": {"search_list": search_list}} search_params.append(diskann_search_param) else: log.error("Invalid index_type.") raise Exception("Invalid index_type.") log.debug(search_params) return search_params def gen_autoindex_search_params(): search_params = [ {}, {"metric_type": "IP"}, {"nlist": "1024"}, {"efSearch": "100"}, {"search_k": "1000"} ] return search_params def gen_all_type_fields(): fields = [] for k, v in DataType.__members__.items(): if v != DataType.UNKNOWN: field, _ = ApiFieldSchemaWrapper().init_field_schema(name=k.lower(), dtype=v) fields.append(field) return fields def gen_normal_expressions_and_templates(): """ Gen a list of filter in expression-format(as a string) and template-format(as a dict) The two formats equals to each other. """ expressions = [ ["", {"expr": "", "expr_params": {}}], ["int64 > 0", {"expr": "int64 > {value_0}", "expr_params": {"value_0": 0}}], ["(int64 > 0 && int64 < 400) or (int64 > 500 && int64 < 1000)", {"expr": "(int64 > {value_0} && int64 < {value_1}) or (int64 > {value_2} && int64 < {value_3})", "expr_params": {"value_0": 0, "value_1": 400, "value_2": 500, "value_3": 1000}}], ["int64 not in [1, 2, 3]", {"expr": "int64 not in {value_0}", "expr_params": {"value_0": [1, 2, 3]}}], ["int64 in [1, 2, 3] and float != 2", {"expr": "int64 in {value_0} and float != {value_1}", "expr_params": {"value_0": [1, 2, 3], "value_1": 2}}], ["int64 == 0 || float == 10**2 || (int64 + 1) == 3", {"expr": "int64 == {value_0} || float == {value_1} || (int64 + {value_2}) == {value_3}", "expr_params": {"value_0": 0, "value_1": 10**2, "value_2": 1, "value_3": 3}}], ["0 <= int64 < 400 and int64 % 100 == 0", {"expr": "{value_0} <= int64 < {value_1} and int64 % {value_2} == {value_0}", "expr_params": {"value_0": 0, "value_1": 400, "value_2": 100}}], ["200+300 < int64 <= 500+500", {"expr": "{value_0} < int64 <= {value_1}", "expr_params": {"value_1": 500+500, "value_0": 200+300}}], ["int64 > 400 && int64 < 200", {"expr": "int64 > {value_0} && int64 < {value_1}", "expr_params": {"value_0": 400, "value_1": 200}}], ["int64 in [300/2, 900%40, -10*30+800, (100+200)*2] or float in [+3**6, 2**10/2]", {"expr": "int64 in {value_0} or float in {value_1}", "expr_params": {"value_0": [int(300/2), 900%40, -10*30+800, (100+200)*2], "value_1": [+3**6*1.0, 2**10/2*1.0]}}], ["float <= -4**5/2 && float > 500-1 && float != 500/2+260", {"expr": "float <= {value_0} && float > {value_1} && float != {value_2}", "expr_params": {"value_0": -4**5/2, "value_1": 500-1, "value_2": 500/2+260}}], ] return expressions def gen_json_field_expressions_and_templates(): """ Gen a list of filter in expression-format(as a string) and template-format(as a dict) The two formats equals to each other. """ expressions = [ ["json_field['number'] > 0", {"expr": "json_field['number'] > {value_0}", "expr_params": {"value_0": 0}}], ["0 <= json_field['number'] < 400 or 1000 > json_field['number'] >= 500", {"expr": "{value_0} <= json_field['number'] < {value_1} or {value_2} > json_field['number'] >= {value_3}", "expr_params": {"value_0": 0, "value_1": 400, "value_2": 1000, "value_3": 500}}], ["json_field['number'] not in [1, 2, 3]", {"expr": "json_field['number'] not in {value_0}", "expr_params": {"value_0": [1, 2, 3]}}], ["json_field['number'] in [1, 2, 3] and json_field['float'] != 2", {"expr": "json_field['number'] in {value_0} and json_field['float'] != {value_1}", "expr_params": {"value_0": [1, 2, 3], "value_1": 2}}], ["json_field['number'] == 0 || json_field['float'] == 10**2 || json_field['number'] + 1 == 3", {"expr": "json_field['number'] == {value_0} || json_field['float'] == {value_1} || json_field['number'] + {value_2} == {value_3}", "expr_params": {"value_0": 0, "value_1": 10**2, "value_2": 1, "value_3": 3}}], ["json_field['number'] < 400 and json_field['number'] >= 100 and json_field['number'] % 100 == 0", {"expr": "json_field['number'] < {value_0} and json_field['number'] >= {value_1} and json_field['number'] % {value_1} == 0", "expr_params": {"value_0": 400, "value_1": 100}}], ["json_field['float'] > 400 && json_field['float'] < 200", {"expr": "json_field['float'] > {value_0} && json_field['float'] < {value_1}", "expr_params": {"value_0": 400, "value_1": 200}}], ["json_field['number'] in [300/2, -10*30+800, (100+200)*2] or json_field['float'] in [+3**6, 2**10/2]", {"expr": "json_field['number'] in {value_0} or json_field['float'] in {value_1}", "expr_params": {"value_0": [int(300/2), -10*30+800, (100+200)*2], "value_1": [+3**6*1.0, 2**10/2*1.0]}}], ["json_field['float'] <= -4**5/2 && json_field['float'] > 500-1 && json_field['float'] != 500/2+260", {"expr": "json_field['float'] <= {value_0} && json_field['float'] > {value_1} && json_field['float'] != {value_2}", "expr_params": {"value_0": -4**5/2, "value_1": 500-1, "value_2": 500/2+260}}], ] return expressions def gen_json_field_expressions_all_single_operator(): """ Gen a list of filter in expression-format(as a string) """ expressions = ["json_field['a'] <= 1", "json_field['a'] <= 1.0", "json_field['a'] >= 1", "json_field['a'] >= 1.0", "json_field['a'] < 2", "json_field['a'] < 2.0", "json_field['a'] > 0", "json_field['a'] > 0.0", "json_field['a'] <= '1'", "json_field['a'] >= '1'", "json_field['a'] < '2'", "json_field['a'] > '0'", "json_field['a'] == 1", "json_field['a'] == 1.0", "json_field['a'] == True", "json_field['a'] == 9707199254740993.0", "json_field['a'] == 9707199254740992", "json_field['a'] == '1'", "json_field['a'] != '1'", "json_field['a'] like '1%'", "json_field['a'] like '%1'", "json_field['a'] like '%1%'", "json_field['a'] LIKE '1%'", "json_field['a'] LIKE '%1'", "json_field['a'] LIKE '%1%'", "EXISTS json_field['a']", "exists json_field['a']", "EXISTS json_field['a']['b']", "exists json_field['a']['b']", "json_field['a'] + 1 >= 2", "json_field['a'] - 1 <= 0", "json_field['a'] + 1.0 >= 2", "json_field['a'] - 1.0 <= 0", "json_field['a'] * 2 == 2", "json_field['a'] * 1.0 == 1.0", "json_field / 1 == 1", "json_field['a'] / 1.0 == 1", "json_field['a'] % 10 == 1", "json_field['a'] == 1**2", "json_field['a'][0] == 1 && json_field['a'][1] == 2", "json_field['a'][0] == 1 and json_field['a'][1] == 2", "json_field['a'][0]['b'] >=1 && json_field['a'][2] == 3", "json_field['a'][0]['b'] >=1 and json_field['a'][2] == 3", "json_field['a'] == 1 || json_field['a'] == '1'", "json_field['a'] == 1 or json_field['a'] == '1'", "json_field['a'][0]['b'] >=1 || json_field['a']['b'] >=1", "json_field['a'][0]['b'] >=1 or json_field['a']['b'] >=1", "json_field['a'] in [1]", "json_contains(json_field['a'], 1)", "JSON_CONTAINS(json_field['a'], 1)", "json_contains_all(json_field['a'], [2.0, '4'])", "JSON_CONTAINS_ALL(json_field['a'], [2.0, '4'])", "json_contains_any(json_field['a'], [2.0, '4'])", "JSON_CONTAINS_ANY(json_field['a'], [2.0, '4'])", "array_contains(json_field['a'], 2)", "ARRAY_CONTAINS(json_field['a'], 2)", "array_contains_all(json_field['a'], [1.0, 2])", "ARRAY_CONTAINS_ALL(json_field['a'], [1.0, 2])", "array_contains_any(json_field['a'], [1.0, 2])", "ARRAY_CONTAINS_ANY(json_field['a'], [1.0, 2])", "array_length(json_field['a']) < 10", "ARRAY_LENGTH(json_field['a']) < 10", "json_field is null", "json_field IS NULL", "json_field is not null", "json_field IS NOT NULL", "json_field['a'] is null", "json_field['a'] IS NULL", "json_field['a'] is not null", "json_field['a'] IS NOT NULL" ] return expressions def gen_array_field_expressions_and_templates(): """ Gen a list of filter in expression-format(as a string) and template-format(as a dict) for a field. The two formats equals to each other. """ expressions = [ ["int32_array[0] > 0", {"expr": "int32_array[0] > {value_0}", "expr_params": {"value_0": 0}}], ["0 <= int32_array[0] < 400 or 1000 > float_array[1] >= 500", {"expr": "{value_0} <= int32_array[0] < {value_1} or {value_2} > float_array[1] >= {value_3}", "expr_params": {"value_0": 0, "value_1": 400, "value_2": 1000, "value_3": 500}}], ["int32_array[1] not in [1, 2, 3]", {"expr": "int32_array[1] not in {value_0}", "expr_params": {"value_0": [1, 2, 3]}}], ["int32_array[1] in [1, 2, 3] and string_array[1] != '2'", {"expr": "int32_array[1] in {value_0} and string_array[1] != {value_2}", "expr_params": {"value_0": [1, 2, 3], "value_2": "2"}}], ["int32_array == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]", {"expr": "int32_array == {value_0}", "expr_params": {"value_0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}}], ["int32_array[1] + 1 == 3 && int32_array[0] - 1 != 1", {"expr": "int32_array[1] + {value_0} == {value_2} && int32_array[0] - {value_0} != {value_0}", "expr_params": {"value_0": 1, "value_2": 3}}], ["int32_array[1] % 100 == 0 && string_array[1] in ['1', '2']", {"expr": "int32_array[1] % {value_0} == {value_1} && string_array[1] in {value_2}", "expr_params": {"value_0": 100, "value_1": 0, "value_2": ["1", "2"]}}], ["int32_array[1] in [300/2, -10*30+800, (200-100)*2] or (float_array[1] <= -4**5/2 || 100 <= int32_array[1] < 200)", {"expr": "int32_array[1] in {value_0} or (float_array[1] <= {value_1} || {value_2} <= int32_array[1] < {value_3})", "expr_params": {"value_0": [int(300/2), -10*30+800, (200-100)*2], "value_1": -4**5/2, "value_2": 100, "value_3": 200}}] ] return expressions def gen_field_compare_expressions(fields1=None, fields2=None): if fields1 is None: fields1 = ["int64_1"] fields2 = ["int64_2"] expressions = [] for field1, field2 in zip(fields1, fields2): expression = [ f"{field1} | {field2} == 1", f"{field1} + {field2} <= 10 || {field1} - {field2} == 2", f"{field1} * {field2} >= 8 && {field1} / {field2} < 2", f"{field1} ** {field2} != 4 and {field1} + {field2} > 5", f"{field1} not in {field2}", f"{field1} in {field2}", ] expressions.extend(expression) return expressions def gen_normal_string_expressions(fields=None): if fields is None: fields = [ct.default_string_field_name] expressions = [] for field in fields: expression = [ f"\"0\"< {field} < \"3\"", f"{field} >= \"0\"", f"({field} > \"0\" && {field} < \"100\") or ({field} > \"200\" && {field} < \"300\")", f"\"0\" <= {field} <= \"100\"", f"{field} == \"0\"|| {field} == \"1\"|| {field} ==\"2\"", f"{field} != \"0\"", f"{field} not in [\"0\", \"1\", \"2\"]", f"{field} in [\"0\", \"1\", \"2\"]" ] expressions.extend(expression) return expressions def gen_invalid_string_expressions(): expressions = [ "varchar in [0, \"1\"]", "varchar not in [\"0\", 1, 2]" ] return expressions def gen_normal_expressions_and_templates_field(field): """ Gen a list of filter in expression-format(as a string) and template-format(as a dict) for a field. The two formats equals to each other. """ expressions_and_templates = [ ["", {"expr": "", "expr_params": {}}], [f"{field} > 0", {"expr": f"{field} > {{value_0}}", "expr_params": {"value_0": 0}}], [f"({field} > 0 && {field} < 400) or ({field} > 500 && {field} < 1000)", {"expr": f"({field} > {{value_0}} && {field} < {{value_1}}) or ({field} > {{value_2}} && {field} < {{value_3}})", "expr_params": {"value_0": 0, "value_1": 400, "value_2": 500, "value_3": 1000}}], [f"{field} not in [1, 2, 3]", {"expr": f"{field} not in {{value_0}}", "expr_params": {"value_0": [1, 2, 3]}}], [f"{field} in [1, 2, 3] and {field} != 2", {"expr": f"{field} in {{value_0}} and {field} != {{value_1}}", "expr_params": {"value_0": [1, 2, 3], "value_1": 2}}], [f"{field} == 0 || {field} == 1 || {field} == 2", {"expr": f"{field} == {{value_0}} || {field} == {{value_1}} || {field} == {{value_2}}", "expr_params": {"value_0": 0, "value_1": 1, "value_2": 2}}], [f"0 < {field} < 400", {"expr": f"{{value_0}} < {field} < {{value_1}}", "expr_params": {"value_0": 0, "value_1": 400}}], [f"500 <= {field} <= 1000", {"expr": f"{{value_0}} <= {field} <= {{value_1}}", "expr_params": {"value_0": 500, "value_1": 1000}}], [f"200+300 <= {field} <= 500+500", {"expr": f"{{value_0}} <= {field} <= {{value_1}}", "expr_params": {"value_0": 200+300, "value_1": 500+500}}], [f"{field} in [300/2, 900%40, -10*30+800, 2048/2%200, (100+200)*2]", {"expr": f"{field} in {{value_0}}", "expr_params": {"value_0": [300*1.0/2, 900*1.0%40, -10*30*1.0+800, 2048*1.0/2%200, (100+200)*1.0*2]}}], [f"{field} in [+3**6, 2**10/2]", {"expr": f"{field} in {{value_0}}", "expr_params": {"value_0": [+3**6*1.0, 2**10*1.0/2]}}], [f"{field} <= 4**5/2 && {field} > 500-1 && {field} != 500/2+260", {"expr": f"{field} <= {{value_0}} && {field} > {{value_1}} && {field} != {{value_2}}", "expr_params": {"value_0": 4**5/2, "value_1": 500-1, "value_2": 500/2+260}}], [f"{field} > 400 && {field} < 200", {"expr": f"{field} > {{value_0}} && {field} < {{value_1}}", "expr_params": {"value_0": 400, "value_1": 200}}], [f"{field} < -2**8", {"expr": f"{field} < {{value_0}}", "expr_params": {"value_0": -2**8}}], [f"({field} + 1) == 3 || {field} * 2 == 64 || {field} == 10**2", {"expr": f"({field} + {{value_0}}) == {{value_1}} || {field} * {{value_2}} == {{value_3}} || {field} == {{value_4}}", "expr_params": {"value_0": 1, "value_1": 3, "value_2": 2, "value_3": 64, "value_4": 10**2}}] ] return expressions_and_templates def get_expr_from_template(template={}): return template.get("expr", None) def get_expr_params_from_template(template={}): return template.get("expr_params", None) def gen_integer_overflow_expressions(): expressions = [ "int8 < - 128", "int8 > 127", "int8 > -129 && int8 < 128", "int16 < -32768", "int16 >= 32768", "int16 > -32769 && int16 <32768", "int32 < -2147483648", "int32 == 2147483648", "int32 < 2147483648 || int32 == -2147483648", "int8 in [-129, 1] || int16 in [32769] || int32 in [2147483650, 0]" ] return expressions def gen_modulo_expression(expr_fields): exprs = [] for field in expr_fields: exprs.extend([ (Expr.EQ(Expr.MOD(field, 10).subset, 1).value, field), (Expr.LT(Expr.MOD(field, 17).subset, 9).value, field), (Expr.LE(Expr.MOD(field, 100).subset, 50).value, field), (Expr.GT(Expr.MOD(field, 50).subset, 40).value, field), (Expr.GE(Expr.MOD(field, 29).subset, 15).value, field), (Expr.NE(Expr.MOD(field, 29).subset, 10).value, field), ]) return exprs def count_match_expr(values_l: list, rex_l: str, op: str, values_r: list, rex_r: str) -> list: if len(values_l) != len(values_r): raise ValueError(f"[count_match_expr] values not equal: {len(values_l)} != {len(values_r)}") res = [] if op in ['and', '&&']: for i in range(len(values_l)): if re.search(rex_l, values_l[i]) and re.search(rex_r, values_r[i]): res.append(i) elif op in ['or', '||']: for i in range(len(values_l)): if re.search(rex_l, values_l[i]) or re.search(rex_r, values_r[i]): res.append(i) else: raise ValueError(f"[count_match_expr] Not support op: {op}") return res def gen_varchar_expression(expr_fields): exprs = [] for field in expr_fields: exprs.extend([ (Expr.like(field, "a%").value, field, r'^a.*'), (Expr.LIKE(field, "%b").value, field, r'.*b$'), (Expr.AND(Expr.like(field, "%b").subset, Expr.LIKE(field, "z%").subset).value, field, r'^z.*b$'), (Expr.And(Expr.like(field, "i%").subset, Expr.LIKE(field, "%j").subset).value, field, r'^i.*j$'), (Expr.OR(Expr.like(field, "%h%").subset, Expr.LIKE(field, "%jo").subset).value, field, fr'(?:h.*|.*jo$)'), (Expr.Or(Expr.like(field, "ip%").subset, Expr.LIKE(field, "%yu%").subset).value, field, fr'(?:^ip.*|.*yu)'), ]) return exprs def gen_varchar_operation(expr_fields): exprs = [] for field in expr_fields: exprs.extend([ (Expr.EQ(field, '"a"').value, field, r'a'), (Expr.GT(field, '"a"').value, field, r'[^a]'), (Expr.GE(field, '"a"').value, field, r'.*'), (Expr.LT(field, '"z"').value, field, r'[^z]'), (Expr.LE(field, '"z"').value, field, r'.*') ]) return exprs def gen_varchar_unicode_expression(expr_fields): exprs = [] for field in expr_fields: exprs.extend([ (Expr.like(field, "国%").value, field, r'^国.*'), (Expr.LIKE(field, "%中").value, field, r'.*中$'), (Expr.AND(Expr.like(field, "%江").subset, Expr.LIKE(field, "麚%").subset).value, field, r'^麚.*江$'), (Expr.And(Expr.like(field, "鄷%").subset, Expr.LIKE(field, "%薞").subset).value, field, r'^鄷.*薞$'), (Expr.OR(Expr.like(field, "%核%").subset, Expr.LIKE(field, "%臥蜜").subset).value, field, fr'(?:核.*|.*臥蜜$)'), (Expr.Or(Expr.like(field, "咴矷%").subset, Expr.LIKE(field, "%濉蠬%").subset).value, field, fr'(?:^咴矷.*|.*濉蠬)'), ]) return exprs def gen_varchar_unicode_expression_array(expr_fields): exprs = [] for field in expr_fields: exprs.extend([ ExprCheckParams(field, Expr.ARRAY_CONTAINS(field, '"中"').value, 'set(["中"]).issubset({0})'), ExprCheckParams(field, Expr.array_contains(field, '"国"').value, 'set(["国"]).issubset({0})'), ExprCheckParams(field, Expr.ARRAY_CONTAINS_ALL(field, ["华"]).value, 'set(["华"]).issubset({0})'), ExprCheckParams(field, Expr.array_contains_all(field, ["中", "国"]).value, 'set(["中", "国"]).issubset({0})'), ExprCheckParams(field, Expr.ARRAY_CONTAINS_ANY(field, ["紅"]).value, 'not set(["紅"]).isdisjoint({0})'), ExprCheckParams(field, Expr.array_contains_any(field, ["紅", "父", "环", "稵"]).value, 'not set(["紅", "父", "环", "稵"]).isdisjoint({0})'), ExprCheckParams(field, Expr.AND(Expr.ARRAY_CONTAINS(field, '"噜"').value, Expr.ARRAY_CONTAINS_ANY(field, ["浮", "沮", "茫"]).value).value, 'set(["噜"]).issubset({0}) and not set(["浮", "沮", "茫"]).isdisjoint({0})'), ExprCheckParams(field, Expr.And(Expr.ARRAY_CONTAINS_ALL(field, ["爤"]).value, Expr.array_contains_any(field, ["暁", "非", "鸳", "丹"]).value).value, 'set(["爤"]).issubset({0}) and not set(["暁", "非", "鸳", "丹"]).isdisjoint({0})'), ExprCheckParams(field, Expr.OR(Expr.array_contains(field, '"草"').value, Expr.array_contains_all(field, ["昩", "苴"]).value).value, 'set(["草"]).issubset({0}) or set(["昩", "苴"]).issubset({0})'), ExprCheckParams(field, Expr.Or(Expr.ARRAY_CONTAINS_ANY(field, ["魡", "展", "隶", "韀", "脠", "噩"]).value, Expr.array_contains_any(field, ["备", "嘎", "蝐", "秦", "万"]).value).value, 'not set(["魡", "展", "隶", "韀", "脠", "噩"]).isdisjoint({0}) or ' + 'not set(["备", "嘎", "蝐", "秦", "万"]).isdisjoint({0})') ]) return exprs def gen_number_operation(expr_fields): exprs = [] for field in expr_fields: exprs.extend([ (Expr.LT(Expr.ADD(field, 23), 100).value, field), (Expr.LT(Expr.ADD(-23, field), 121).value, field), (Expr.LE(Expr.SUB(field, 123), 99).value, field), (Expr.GT(Expr.MUL(field, 2), 88).value, field), (Expr.GT(Expr.MUL(3, field), 137).value, field), (Expr.GE(Expr.DIV(field, 30), 20).value, field), ]) return exprs def l2(x, y): return np.linalg.norm(np.array(x) - np.array(y)) def ip(x, y): return np.inner(np.array(x), np.array(y)) def cosine(x, y): return np.dot(x, y)/(np.linalg.norm(x)*np.linalg.norm(y)) def jaccard(x, y): x = np.asarray(x, np.bool_) y = np.asarray(y, np.bool_) return 1 - np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum()) def hamming(x, y): x = np.asarray(x, np.bool_) y = np.asarray(y, np.bool_) return np.bitwise_xor(x, y).sum() def tanimoto(x, y): x = np.asarray(x, np.bool_) y = np.asarray(y, np.bool_) res = np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum()) if res == 0: value = float("inf") else: value = -np.log2(res) return value def tanimoto_calc(x, y): x = np.asarray(x, np.bool_) y = np.asarray(y, np.bool_) return np.double((len(x) - np.bitwise_xor(x, y).sum())) / (len(y) + np.bitwise_xor(x, y).sum()) def substructure(x, y): x = np.asarray(x, np.bool_) y = np.asarray(y, np.bool_) return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(y) def superstructure(x, y): x = np.asarray(x, np.bool_) y = np.asarray(y, np.bool_) return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(x) def compare_distance_2d_vector(x, y, distance, metric, sqrt): for i in range(len(x)): for j in range(len(y)): if metric == "L2": distance_i = l2(x[i], y[j]) if not sqrt: distance_i = math.pow(distance_i, 2) elif metric == "IP": distance_i = ip(x[i], y[j]) elif metric == "HAMMING": distance_i = hamming(x[i], y[j]) elif metric == "TANIMOTO": distance_i = tanimoto_calc(x[i], y[j]) elif metric == "JACCARD": distance_i = jaccard(x[i], y[j]) else: raise Exception("metric type is invalid") assert abs(distance_i - distance[i][j]) < ct.epsilon return True def compare_distance_vector_and_vector_list(x, y, metric, distance): """ target: compare the distance between x and y[i] with the expected distance array method: compare the distance between x and y[i] with the expected distance array expected: return true if all distances are matched """ if not isinstance(y, list): log.error("%s is not a list." % str(y)) assert False for i in range(len(y)): if metric == "L2": distance_i = (l2(x, y[i]))**2 elif metric == "IP": distance_i = ip(x, y[i]) elif metric == "COSINE": distance_i = cosine(x, y[i]) else: raise Exception("metric type is invalid") if abs(distance_i - distance[i]) > ct.epsilon: log.error(f"The distance between {x} and {y[i]} does not equal {distance[i]}, expected: {distance_i}") assert abs(distance_i - distance[i]) < ct.epsilon return True def modify_file(file_path_list, is_modify=False, input_content=""): """ file_path_list : file list -> list[] is_modify : does the file need to be reset input_content :the content that need to insert to the file """ if not isinstance(file_path_list, list): log.error("[modify_file] file is not a list.") for file_path in file_path_list: folder_path, file_name = os.path.split(file_path) if not os.path.isdir(folder_path): log.debug("[modify_file] folder(%s) is not exist." % folder_path) os.makedirs(folder_path) if not os.path.isfile(file_path): log.error("[modify_file] file(%s) is not exist." % file_path) else: if is_modify is True: log.debug("[modify_file] start modifying file(%s)..." % file_path) with open(file_path, "r+") as f: f.seek(0) f.truncate() f.write(input_content) f.close() log.info("[modify_file] file(%s) modification is complete." % file_path_list) def index_to_dict(index): return { "collection_name": index.collection_name, "field_name": index.field_name, # "name": index.name, "params": index.params } def get_index_params_params(index_type): """get default params of index params by index type""" params = ct.default_all_indexes_params[ct.all_index_types.index(index_type)].copy() return params def get_search_params_params(index_type): """get default params of search params by index type""" params = ct.default_all_search_params_params[ct.all_index_types.index(index_type)].copy() return params def assert_json_contains(expr, list_data): opposite = False if expr.startswith("not"): opposite = True expr = expr.split("not ", 1)[1] result_ids = [] expr_prefix = expr.split('(', 1)[0] exp_ids = eval(expr.split(', ', 1)[1].split(')', 1)[0]) if expr_prefix in ["json_contains", "JSON_CONTAINS", "array_contains", "ARRAY_CONTAINS"]: for i in range(len(list_data)): if exp_ids in list_data[i]: result_ids.append(i) elif expr_prefix in ["json_contains_all", "JSON_CONTAINS_ALL", "array_contains_all", "ARRAY_CONTAINS_ALL"]: for i in range(len(list_data)): set_list_data = set(tuple(element) if isinstance(element, list) else element for element in list_data[i]) if set(exp_ids).issubset(set_list_data): result_ids.append(i) elif expr_prefix in ["json_contains_any", "JSON_CONTAINS_ANY", "array_contains_any", "ARRAY_CONTAINS_ANY"]: for i in range(len(list_data)): set_list_data = set(tuple(element) if isinstance(element, list) else element for element in list_data[i]) if set(exp_ids) & set_list_data: result_ids.append(i) else: log.warning("unknown expr: %s" % expr) if opposite: result_ids = [i for i in range(len(list_data)) if i not in result_ids] return result_ids def assert_equal_index(index_1, index_2): return index_to_dict(index_1) == index_to_dict(index_2) def gen_partitions(collection_w, partition_num=1): """ target: create extra partitions except for _default method: create more than one partitions expected: return collection and raw data """ log.info("gen_partitions: creating partitions") for i in range(partition_num): partition_name = "search_partition_" + str(i) collection_w.create_partition(partition_name=partition_name, description="search partition") par = collection_w.partitions assert len(par) == (partition_num + 1) log.info("gen_partitions: created partitions %s" % par) def insert_data(collection_w, nb=ct.default_nb, is_binary=False, is_all_data_type=False, auto_id=False, dim=ct.default_dim, insert_offset=0, enable_dynamic_field=False, with_json=True, random_primary_key=False, multiple_dim_array=[], primary_field=ct.default_int64_field_name, vector_data_type=DataType.FLOAT_VECTOR, nullable_fields={}, language=None): """ target: insert non-binary/binary data method: insert non-binary/binary data into partitions if any expected: return collection and raw data """ par = collection_w.partitions num = len(par) vectors = [] binary_raw_vectors = [] insert_ids = [] start = insert_offset log.info(f"inserting {nb} data into collection {collection_w.name}") # extract the vector field name list vector_name_list = extract_vector_field_name_list(collection_w) # prepare data for i in range(num): log.debug("Dynamic field is enabled: %s" % enable_dynamic_field) if not is_binary: if not is_all_data_type: if not enable_dynamic_field: if vector_data_type == DataType.FLOAT_VECTOR: default_data = gen_default_dataframe_data(nb // num, dim=dim, start=start, with_json=with_json, random_primary_key=random_primary_key, multiple_dim_array=multiple_dim_array, multiple_vector_field_name=vector_name_list, vector_data_type=vector_data_type, auto_id=auto_id, primary_field=primary_field, nullable_fields=nullable_fields, language=language) elif vector_data_type in ct.append_vector_type: default_data = gen_default_list_data(nb // num, dim=dim, start=start, with_json=with_json, random_primary_key=random_primary_key, multiple_dim_array=multiple_dim_array, multiple_vector_field_name=vector_name_list, vector_data_type=vector_data_type, auto_id=auto_id, primary_field=primary_field, nullable_fields=nullable_fields, language=language) else: default_data = gen_default_rows_data(nb // num, dim=dim, start=start, with_json=with_json, multiple_dim_array=multiple_dim_array, multiple_vector_field_name=vector_name_list, vector_data_type=vector_data_type, auto_id=auto_id, primary_field=primary_field, nullable_fields=nullable_fields, language=language) else: if not enable_dynamic_field: if vector_data_type == DataType.FLOAT_VECTOR: default_data = gen_general_list_all_data_type(nb // num, dim=dim, start=start, with_json=with_json, random_primary_key=random_primary_key, multiple_dim_array=multiple_dim_array, multiple_vector_field_name=vector_name_list, auto_id=auto_id, primary_field=primary_field, nullable_fields=nullable_fields, language=language) elif vector_data_type == DataType.FLOAT16_VECTOR or vector_data_type == DataType.BFLOAT16_VECTOR: default_data = gen_general_list_all_data_type(nb // num, dim=dim, start=start, with_json=with_json, random_primary_key=random_primary_key, multiple_dim_array=multiple_dim_array, multiple_vector_field_name=vector_name_list, auto_id=auto_id, primary_field=primary_field, nullable_fields=nullable_fields, language=language) else: if os.path.exists(ct.rows_all_data_type_file_path + f'_{i}' + f'_dim{dim}.txt'): with open(ct.rows_all_data_type_file_path + f'_{i}' + f'_dim{dim}.txt', 'rb') as f: default_data = pickle.load(f) else: default_data = gen_default_rows_data_all_data_type(nb // num, dim=dim, start=start, with_json=with_json, multiple_dim_array=multiple_dim_array, multiple_vector_field_name=vector_name_list, partition_id=i, auto_id=auto_id, primary_field=primary_field, language=language) else: default_data, binary_raw_data = gen_default_binary_dataframe_data(nb // num, dim=dim, start=start, auto_id=auto_id, primary_field=primary_field, nullable_fields=nullable_fields, language=language) binary_raw_vectors.extend(binary_raw_data) insert_res = collection_w.insert(default_data, par[i].name)[0] log.info(f"inserted {nb // num} data into collection {collection_w.name}") time_stamp = insert_res.timestamp insert_ids.extend(insert_res.primary_keys) vectors.append(default_data) start += nb // num return collection_w, vectors, binary_raw_vectors, insert_ids, time_stamp def _check_primary_keys(primary_keys, nb): if primary_keys is None: raise Exception("The primary_keys is None") assert len(primary_keys) == nb for i in range(nb - 1): if primary_keys[i] >= primary_keys[i + 1]: return False return True def get_segment_distribution(res): """ Get segment distribution """ from collections import defaultdict segment_distribution = defaultdict(lambda: {"sealed": []}) for r in res: for node_id in r.nodeIds: if r.state == 3: segment_distribution[node_id]["sealed"].append(r.segmentID) return segment_distribution def percent_to_int(string): """ transform percent(0%--100%) to int """ new_int = -1 if not isinstance(string, str): log.error("%s is not a string" % string) return new_int if "%" not in string: log.error("%s is not a percent" % string) else: new_int = int(string.strip("%")) return new_int def gen_grant_list(collection_name): grant_list = [{"object": "Collection", "object_name": collection_name, "privilege": "Load"}, {"object": "Collection", "object_name": collection_name, "privilege": "Release"}, {"object": "Collection", "object_name": collection_name, "privilege": "Compaction"}, {"object": "Collection", "object_name": collection_name, "privilege": "Delete"}, {"object": "Collection", "object_name": collection_name, "privilege": "GetStatistics"}, {"object": "Collection", "object_name": collection_name, "privilege": "CreateIndex"}, {"object": "Collection", "object_name": collection_name, "privilege": "IndexDetail"}, {"object": "Collection", "object_name": collection_name, "privilege": "DropIndex"}, {"object": "Collection", "object_name": collection_name, "privilege": "Search"}, {"object": "Collection", "object_name": collection_name, "privilege": "Flush"}, {"object": "Collection", "object_name": collection_name, "privilege": "Query"}, {"object": "Collection", "object_name": collection_name, "privilege": "LoadBalance"}, {"object": "Collection", "object_name": collection_name, "privilege": "Import"}, {"object": "Global", "object_name": "*", "privilege": "All"}, {"object": "Global", "object_name": "*", "privilege": "CreateCollection"}, {"object": "Global", "object_name": "*", "privilege": "DropCollection"}, {"object": "Global", "object_name": "*", "privilege": "DescribeCollection"}, {"object": "Global", "object_name": "*", "privilege": "ShowCollections"}, {"object": "Global", "object_name": "*", "privilege": "CreateOwnership"}, {"object": "Global", "object_name": "*", "privilege": "DropOwnership"}, {"object": "Global", "object_name": "*", "privilege": "SelectOwnership"}, {"object": "Global", "object_name": "*", "privilege": "ManageOwnership"}, {"object": "User", "object_name": "*", "privilege": "UpdateUser"}, {"object": "User", "object_name": "*", "privilege": "SelectUser"}] return grant_list def install_milvus_operator_specific_config(namespace, milvus_mode, release_name, image, rate_limit_enable, collection_rate_limit): """ namespace : str milvus_mode : str -> standalone or cluster release_name : str image: str -> image tag including repository rate_limit_enable: str -> true or false, switch for rate limit collection_rate_limit: int -> collection rate limit numbers input_content :the content that need to insert to the file return: milvus host name """ if not isinstance(namespace, str): log.error("[namespace] is not a string.") if not isinstance(milvus_mode, str): log.error("[milvus_mode] is not a string.") if not isinstance(release_name, str): log.error("[release_name] is not a string.") if not isinstance(image, str): log.error("[image] is not a string.") if not isinstance(rate_limit_enable, str): log.error("[rate_limit_enable] is not a string.") if not isinstance(collection_rate_limit, int): log.error("[collection_rate_limit] is not an integer.") if milvus_mode not in ["standalone", "cluster"]: log.error("[milvus_mode] is not 'standalone' or 'cluster'") if rate_limit_enable not in ["true", "false"]: log.error("[rate_limit_enable] is not 'true' or 'false'") data_config = { 'metadata.namespace': namespace, 'spec.mode': milvus_mode, 'metadata.name': release_name, 'spec.components.image': image, 'spec.components.proxy.serviceType': 'LoadBalancer', 'spec.components.dataNode.replicas': 2, 'spec.config.common.retentionDuration': 60, 'spec.config.quotaAndLimits.enable': rate_limit_enable, 'spec.config.quotaAndLimits.ddl.collectionRate': collection_rate_limit, } mil = MilvusOperator() mil.install(data_config) if mil.wait_for_healthy(release_name, namespace, timeout=1800): host = mil.endpoint(release_name, namespace).split(':')[0] else: raise MilvusException(message=f'Milvus healthy timeout 1800s') return host def get_wildcard_output_field_names(collection_w, output_fields): all_fields = [field.name for field in collection_w.schema.fields] output_fields = output_fields.copy() if "*" in output_fields: output_fields.remove("*") output_fields.extend(all_fields) return output_fields def extract_vector_field_name_list(collection_w): """ extract the vector field name list collection_w : the collection object to be extracted thea name of all the vector fields return: the vector field name list without the default float vector field name """ schema_dict = collection_w.schema.to_dict() fields = schema_dict.get('fields') vector_name_list = [] for field in fields: if field['type'] == DataType.FLOAT_VECTOR \ or field['type'] == DataType.FLOAT16_VECTOR \ or field['type'] == DataType.BFLOAT16_VECTOR \ or field['type'] == DataType.SPARSE_FLOAT_VECTOR: if field['name'] != ct.default_float_vec_field_name: vector_name_list.append(field['name']) return vector_name_list def get_field_dtype_by_field_name(collection_w, field_name): """ get the vector field data type by field name collection_w : the collection object to be extracted return: the field data type of the field name """ schema_dict = collection_w.schema.to_dict() fields = schema_dict.get('fields') for field in fields: if field['name'] == field_name: return field['type'] return None def get_activate_func_from_metric_type(metric_type): activate_function = lambda x: x if metric_type == "COSINE": activate_function = lambda x: (1 + x) * 0.5 elif metric_type == "IP": activate_function = lambda x: 0.5 + math.atan(x)/ math.pi elif metric_type == "BM25": activate_function = lambda x: 2 * math.atan(x) / math.pi else: activate_function = lambda x: 1.0 - 2*math.atan(x) / math.pi return activate_function def get_hybrid_search_base_results_rrf(search_res_dict_array, round_decimal=-1): """ merge the element in the dicts array search_res_dict_array : the dict array in which the elements to be merged return: the sorted id and score answer """ # calculate hybrid search base line search_res_dict_merge = {} ids_answer = [] score_answer = [] for i, result in enumerate(search_res_dict_array, 0): for key, distance in result.items(): search_res_dict_merge[key] = search_res_dict_merge.get(key, 0) + distance if round_decimal != -1 : for k, v in search_res_dict_merge.items(): multiplier = math.pow(10.0, round_decimal) v = math.floor(v*multiplier+0.5) / multiplier search_res_dict_merge[k] = v sorted_list = sorted(search_res_dict_merge.items(), key=lambda x: x[1], reverse=True) for sort in sorted_list: ids_answer.append(int(sort[0])) score_answer.append(float(sort[1])) return ids_answer, score_answer def get_hybrid_search_base_results(search_res_dict_array, weights, metric_types, round_decimal=-1): """ merge the element in the dicts array search_res_dict_array : the dict array in which the elements to be merged return: the sorted id and score answer """ # calculate hybrid search base line search_res_dict_merge = {} ids_answer = [] score_answer = [] for i, result in enumerate(search_res_dict_array, 0): activate_function = get_activate_func_from_metric_type(metric_types[i]) for key, distance in result.items(): activate_distance = activate_function(distance) weight = weights[i] search_res_dict_merge[key] = search_res_dict_merge.get(key, 0) + activate_function(distance) * weights[i] if round_decimal != -1 : for k, v in search_res_dict_merge.items(): multiplier = math.pow(10.0, round_decimal) v = math.floor(v*multiplier+0.5) / multiplier search_res_dict_merge[k] = v sorted_list = sorted(search_res_dict_merge.items(), key=lambda x: x[1], reverse=True) for sort in sorted_list: ids_answer.append(int(sort[0])) score_answer.append(float(sort[1])) return ids_answer, score_answer def gen_bf16_vectors(num, dim): """ generate brain float16 vector data raw_vectors : the vectors bf16_vectors: the bytes used for insert return: raw_vectors and bf16_vectors """ raw_vectors = [] bf16_vectors = [] for _ in range(num): raw_vector = [random.random() for _ in range(dim)] raw_vectors.append(raw_vector) bf16_vector = np.array(raw_vector, dtype=bfloat16) bf16_vectors.append(bf16_vector) return raw_vectors, bf16_vectors def gen_fp16_vectors(num, dim): """ generate float16 vector data raw_vectors : the vectors fp16_vectors: the bytes used for insert return: raw_vectors and fp16_vectors """ raw_vectors = [] fp16_vectors = [] for _ in range(num): raw_vector = [random.random() for _ in range(dim)] raw_vectors.append(raw_vector) fp16_vector = np.array(raw_vector, dtype=np.float16) fp16_vectors.append(fp16_vector) return raw_vectors, fp16_vectors def gen_sparse_vectors(nb, dim=1000, sparse_format="dok", empty_percentage=0): # default sparse format is dok, dict of keys # another option is coo, coordinate List rng = np.random.default_rng() vectors = [{ d: rng.random() for d in list(set(random.sample(range(dim), random.randint(20, 30)) + [0, 1])) } for _ in range(nb)] if empty_percentage > 0: empty_nb = int(nb * empty_percentage / 100) empty_ids = random.sample(range(nb), empty_nb) for i in empty_ids: vectors[i] = {} if sparse_format == "coo": vectors = [ {"indices": list(x.keys()), "values": list(x.values())} for x in vectors ] return vectors def gen_vectors(nb, dim, vector_data_type=DataType.FLOAT_VECTOR): vectors = [] if vector_data_type == DataType.FLOAT_VECTOR: vectors = [[random.random() for _ in range(dim)] for _ in range(nb)] elif vector_data_type == DataType.FLOAT16_VECTOR: vectors = gen_fp16_vectors(nb, dim)[1] elif vector_data_type == DataType.BFLOAT16_VECTOR: vectors = gen_bf16_vectors(nb, dim)[1] elif vector_data_type == DataType.SPARSE_FLOAT_VECTOR: vectors = gen_sparse_vectors(nb, dim) elif vector_data_type == ct.text_sparse_vector: vectors = gen_text_vectors(nb) # for Full Text Search elif vector_data_type == DataType.BINARY_VECTOR: vectors = gen_binary_vectors(nb, dim)[1] else: log.error(f"Invalid vector data type: {vector_data_type}") raise Exception(f"Invalid vector data type: {vector_data_type}") if dim > 1: if vector_data_type == DataType.FLOAT_VECTOR: vectors = preprocessing.normalize(vectors, axis=1, norm='l2') vectors = vectors.tolist() return vectors def gen_text_vectors(nb, language="en"): fake = Faker("en_US") if language == "zh": fake = Faker("zh_CN") vectors = [" milvus " + fake.text() for _ in range(nb)] return vectors def field_types() -> dict: return dict(sorted(dict(DataType.__members__).items(), key=lambda item: item[0], reverse=True)) def get_array_element_type(data_type: str): if hasattr(DataType, "ARRAY") and data_type.startswith(DataType.ARRAY.name): element_type = data_type.lstrip(DataType.ARRAY.name).lstrip("_") for _field in field_types().keys(): if str(element_type).upper().startswith(_field): return _field, getattr(DataType, _field) raise ValueError(f"[get_array_data_type] Can't find element type:{element_type} for array:{data_type}") raise ValueError(f"[get_array_data_type] Data type is not start with array: {data_type}") def set_field_schema(field: str, params: dict): for k, v in field_types().items(): if str(field).upper().startswith(k): _kwargs = {} _field_element, _data_type = k, DataType.NONE if hasattr(DataType, "ARRAY") and _field_element == DataType.ARRAY.name: _field_element, _data_type = get_array_element_type(field) _kwargs.update({"max_capacity": ct.default_max_capacity, "element_type": _data_type}) if _field_element in [DataType.STRING.name, DataType.VARCHAR.name]: _kwargs.update({"max_length": ct.default_length}) elif _field_element in [DataType.BINARY_VECTOR.name, DataType.FLOAT_VECTOR.name, DataType.FLOAT16_VECTOR.name, DataType.BFLOAT16_VECTOR.name]: _kwargs.update({"dim": ct.default_dim}) if isinstance(params, dict): _kwargs.update(params) else: raise ValueError( f"[set_field_schema] Field `{field}` params is not a dict, type: {type(params)}, params: {params}") return ApiFieldSchemaWrapper().init_field_schema(name=field, dtype=v, **_kwargs)[0] raise ValueError(f"[set_field_schema] Can't set field:`{field}` schema: {params}") def set_collection_schema(fields: list, field_params: dict = {}, **kwargs): """ :param fields: List[str] :param field_params: {: dict} int64_1: is_primary: bool description: str varchar_1: is_primary: bool description: str max_length: int = 65535 varchar_2: max_length: int = 100 is_partition_key: bool array_int8_1: max_capacity: int = 100 array_varchar_1: max_capacity: int = 100 max_length: int = 65535 float_vector: dim: int = 128 :param kwargs: description: str primary_field: str auto_id: bool enable_dynamic_field: bool num_partitions: int """ field_schemas = [set_field_schema(field=field, params=field_params.get(field, {})) for field in fields] return ApiCollectionSchemaWrapper().init_collection_schema(fields=field_schemas, **kwargs)[0] def check_key_exist(source: dict, target: dict): global flag flag = True def check_keys(_source, _target): global flag for key, value in _source.items(): if key in _target and isinstance(value, dict): check_keys(_source[key], _target[key]) elif key not in _target: log.error("[check_key_exist] Key: '{0}' not in target: {1}".format(key, _target)) flag = False check_keys(source, target) return flag def gen_unicode_string(): return chr(random.randint(0x4e00, 0x9fbf)) def gen_unicode_string_batch(nb, string_len: int = 1): return [''.join([gen_unicode_string() for _ in range(string_len)]) for _ in range(nb)] def gen_unicode_string_array_batch(nb, string_len: int = 1, max_capacity: int = ct.default_max_capacity): return [[''.join([gen_unicode_string() for _ in range(min(random.randint(1, string_len), 50))]) for _ in range(random.randint(0, max_capacity))] for _ in range(nb)] def iter_insert_list_data(data: list, batch: int, total_len: int): nb_list = [batch for _ in range(int(total_len / batch))] if total_len % batch > 0: nb_list.append(total_len % batch) data_obj = [iter(d) for d in data] for n in nb_list: yield [[next(o) for _ in range(n)] for o in data_obj] def gen_collection_name_by_testcase_name(module_index=1): """ Gen a unique collection name by testcase name if calling from the test base class, module_index=2 if calling from the testcase, module_index=1 """ return inspect.stack()[module_index][3] + gen_unique_str("_")