#include #include #include #include #include #include #include #include "dog_segment/ConcurrentVector.h" #include "dog_segment/SegmentBase.h" // #include "knowhere/index/vector_index/helpers/IndexParameter.h" #include "dog_segment/SegmentBase.h" #include "dog_segment/AckResponder.h" #include #include #include #include #include #include #include "test_utils/Timer.h" using std::cin; using std::cout; using std::endl; using namespace milvus::engine; using namespace milvus::dog_segment; using std::vector; using namespace milvus; namespace { template auto generate_data(int N) { std::vector raw_data; std::vector timestamps; std::vector uids; std::default_random_engine er(42); std::uniform_real_distribution<> distribution(0.0, 1.0); std::default_random_engine ei(42); for (int i = 0; i < N; ++i) { uids.push_back(10 * N + i); timestamps.push_back(0); // append vec float vec[DIM]; for (auto& x : vec) { x = distribution(er); } raw_data.insert(raw_data.end(), std::begin(vec), std::end(vec)); } return std::make_tuple(raw_data, timestamps, uids); } } // namespace void merge_into(int64_t queries, int64_t topk, float* distances, int64_t* uids, const float* new_distances, const int64_t* new_uids) { for (int64_t qn = 0; qn < queries; ++qn) { auto base = qn * topk; auto src2_dis = distances + base; auto src2_uids = uids + base; auto src1_dis = new_distances + base; auto src1_uids = new_uids + base; std::vector buf_dis(topk); std::vector buf_uids(topk); auto it1 = 0; auto it2 = 0; for (auto buf = 0; buf < topk; ++buf) { if (src1_dis[it1] <= src2_dis[it2]) { buf_dis[buf] = src1_dis[it1]; buf_uids[buf] = src1_uids[it1]; ++it1; } else { buf_dis[buf] = src2_dis[it2]; buf_uids[buf] = src2_uids[it2]; ++it2; } } std::copy_n(buf_dis.data(), topk, src2_dis); std::copy_n(buf_uids.data(), topk, src2_uids); } } TEST(Indexing, SmartBruteForce) { // how to ? // I'd know constexpr int N = 100000; constexpr int DIM = 16; constexpr int TOPK = 10; auto bitmap = std::make_shared(N); // exclude the first for (int i = 0; i < N / 2; ++i) { bitmap->set(i); } auto [raw_data, timestamps, uids] = generate_data(N); auto total_count = DIM * TOPK; auto raw = (const float*)raw_data.data(); constexpr int64_t queries = 3; auto heap = faiss::float_maxheap_array_t{}; auto query_data = raw; vector final_uids(total_count); vector final_dis(total_count, std::numeric_limits::max()); for (int beg = 0; beg < N; beg += DefaultElementPerChunk) { vector buf_uids(total_count, -1); vector buf_dis(total_count, std::numeric_limits::max()); faiss::float_maxheap_array_t buf = {queries, TOPK, buf_uids.data(), buf_dis.data()}; auto end = beg + DefaultElementPerChunk; if (end > N) { end = N; } auto nsize = end - beg; auto src_data = raw + beg * DIM; faiss::knn_L2sqr(query_data, src_data, DIM, queries, nsize, &buf, nullptr); if (beg == 0) { final_uids = buf_uids; final_dis = buf_dis; } else { merge_into(queries, TOPK, final_dis.data(), final_uids.data(), buf_dis.data(), buf_uids.data()); } } for (int qn = 0; qn < queries; ++qn) { for (int kn = 0; kn < TOPK; ++kn) { auto index = qn * TOPK + kn; cout << final_uids[index] << "->" << final_dis[index] << endl; } cout << endl; } } TEST(Indexing, Naive) { constexpr int N = 100000; constexpr int DIM = 16; constexpr int TOPK = 10; auto [raw_data, timestamps, uids] = generate_data(N); auto index = knowhere::VecIndexFactory::GetInstance().CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_IVFPQ, knowhere::IndexMode::MODE_CPU); auto conf = milvus::knowhere::Config{ {knowhere::meta::DIM, DIM}, {knowhere::meta::TOPK, TOPK}, {knowhere::IndexParams::nlist, 100}, {knowhere::IndexParams::nprobe, 4}, {knowhere::IndexParams::m, 4}, {knowhere::IndexParams::nbits, 8}, {knowhere::Metric::TYPE, milvus::knowhere::Metric::L2}, {knowhere::meta::DEVICEID, 0}, }; // auto ds = knowhere::GenDataset(N, DIM, raw_data.data()); // auto ds2 = knowhere::GenDatasetWithIds(N / 2, DIM, raw_data.data() + // sizeof(float[DIM]) * N / 2, uids.data() + N / 2); // NOTE: you must train first and then add // index->Train(ds, conf); // index->Train(ds2, conf); // index->AddWithoutIds(ds, conf); // index->Add(ds2, conf); std::vector datasets; std::vector> ftrashs; auto raw = raw_data.data(); for (int beg = 0; beg < N; beg += DefaultElementPerChunk) { auto end = beg + DefaultElementPerChunk; if (end > N) { end = N; } std::vector ft(raw + DIM * beg, raw + DIM * end); auto ds = knowhere::GenDataset(end - beg, DIM, ft.data()); datasets.push_back(ds); ftrashs.push_back(std::move(ft)); // // NOTE: you must train first and then add // index->Train(ds, conf); // index->Add(ds, conf); } for (auto& ds : datasets) { index->Train(ds, conf); } for (auto& ds : datasets) { index->AddWithoutIds(ds, conf); } auto bitmap = std::make_shared(N); // exclude the first for (int i = 0; i < N / 2; ++i) { bitmap->set(i); } // index->SetBlacklist(bitmap); auto query_ds = knowhere::GenDataset(1, DIM, raw_data.data()); auto final = index->Query(query_ds, conf, bitmap); auto ids = final->Get(knowhere::meta::IDS); auto distances = final->Get(knowhere::meta::DISTANCE); for (int i = 0; i < TOPK; ++i) { if (ids[i] < N / 2) { cout << "WRONG: "; } cout << ids[i] << "->" << distances[i] << endl; } int i = 1 + 1; } TEST(Indexing, IVFFlatNM) { // hello, world constexpr auto DIM = 16; constexpr auto K = 10; auto N = 1024 * 1024 * 10; auto num_query = 1000; Timer timer; auto [raw_data, timestamps, uids] = generate_data(N); std::cout << "generate data: " << timer.get_step_seconds() << " seconds" << endl; auto indexing = std::make_shared(); auto conf = knowhere::Config{{knowhere::meta::DIM, DIM}, {knowhere::meta::TOPK, K}, {knowhere::IndexParams::nlist, 100}, {knowhere::IndexParams::nprobe, 4}, {knowhere::Metric::TYPE, milvus::knowhere::Metric::L2}, {knowhere::meta::DEVICEID, 0}}; auto database = knowhere::GenDataset(N, DIM, raw_data.data()); std::cout << "init ivf " << timer.get_step_seconds() << " seconds" << endl; indexing->Train(database, conf); std::cout << "train ivf " << timer.get_step_seconds() << " seconds" << endl; indexing->AddWithoutIds(database, conf); std::cout << "insert ivf " << timer.get_step_seconds() << " seconds" << endl; EXPECT_EQ(indexing->Count(), N); EXPECT_EQ(indexing->Dim(), DIM); auto query_dataset = knowhere::GenDataset(num_query, DIM, raw_data.data() + DIM * 4200); auto result = indexing->Query(query_dataset, conf, nullptr); std::cout << "query ivf " << timer.get_step_seconds() << " seconds" << endl; auto ids = result->Get(milvus::knowhere::meta::IDS); auto dis = result->Get(milvus::knowhere::meta::DISTANCE); for (int i = 0; i < std::min(num_query * K, 100); ++i) { cout << ids[i] << "->" << dis[i] << endl; } }