// Copyright (C) 2019-2020 Zilliz. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software distributed under the License // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express // or implied. See the License for the specific language governing permissions and limitations under the License #include #include #include #include #include #include #include #include #include "query/generated/ExecPlanNodeVisitor.h" #include "segcore/SegmentGrowingImpl.h" #include "query/PlanNode.h" #include "query/PlanImpl.h" #include "segcore/Reduce.h" #include "utils/tools.h" namespace milvus::segcore { int64_t SegmentGrowingImpl::PreInsert(int64_t size) { auto reserved_begin = record_.reserved.fetch_add(size); return reserved_begin; } int64_t SegmentGrowingImpl::PreDelete(int64_t size) { auto reserved_begin = deleted_record_.reserved.fetch_add(size); return reserved_begin; } auto SegmentGrowingImpl::get_deleted_bitmap(int64_t del_barrier, Timestamp query_timestamp, int64_t insert_barrier, bool force) -> std::shared_ptr { auto old = deleted_record_.get_lru_entry(); if (!force || old->bitmap_ptr->count() == insert_barrier) { if (old->del_barrier == del_barrier) { return old; } } auto current = old->clone(insert_barrier); current->del_barrier = del_barrier; auto bitmap = current->bitmap_ptr; if (del_barrier < old->del_barrier) { for (auto del_index = del_barrier; del_index < old->del_barrier; ++del_index) { // get uid in delete logs auto uid = deleted_record_.uids_[del_index]; // map uid to corresponding offsets, select the max one, which should be the target // the max one should be closest to query_timestamp, so the delete log should refer to it int64_t the_offset = -1; auto [iter_b, iter_e] = uid2offset_.equal_range(uid); for (auto iter = iter_b; iter != iter_e; ++iter) { auto offset = iter->second; if (record_.timestamps_[offset] < query_timestamp) { Assert(offset < insert_barrier); the_offset = std::max(the_offset, offset); } } // if not found, skip if (the_offset == -1) { continue; } // otherwise, clear the flag bitmap->clear(the_offset); } return current; } else { for (auto del_index = old->del_barrier; del_index < del_barrier; ++del_index) { // get uid in delete logs auto uid = deleted_record_.uids_[del_index]; // map uid to corresponding offsets, select the max one, which should be the target // the max one should be closest to query_timestamp, so the delete log should refer to it int64_t the_offset = -1; auto [iter_b, iter_e] = uid2offset_.equal_range(uid); for (auto iter = iter_b; iter != iter_e; ++iter) { auto offset = iter->second; if (offset >= insert_barrier) { continue; } if (record_.timestamps_[offset] < query_timestamp) { Assert(offset < insert_barrier); the_offset = std::max(the_offset, offset); } } // if not found, skip if (the_offset == -1) { continue; } // otherwise, set the flag bitmap->set(the_offset); } this->deleted_record_.insert_lru_entry(current); } return current; } Status SegmentGrowingImpl::Insert(int64_t reserved_begin, int64_t size, const int64_t* uids_raw, const Timestamp* timestamps_raw, const RowBasedRawData& entities_raw) { Assert(entities_raw.count == size); // step 1: check schema if valid if (entities_raw.sizeof_per_row != schema_->get_total_sizeof()) { std::string msg = "entity length = " + std::to_string(entities_raw.sizeof_per_row) + ", schema length = " + std::to_string(schema_->get_total_sizeof()); throw std::runtime_error(msg); } // step 2: sort timestamp auto raw_data = reinterpret_cast(entities_raw.raw_data); auto len_per_row = entities_raw.sizeof_per_row; std::vector> ordering; ordering.resize(size); // #pragma omp parallel for for (int i = 0; i < size; ++i) { ordering[i] = std::make_tuple(timestamps_raw[i], uids_raw[i], i); } std::sort(ordering.begin(), ordering.end()); // step 3: and convert row-base data to column base accordingly auto sizeof_infos = schema_->get_sizeof_infos(); std::vector offset_infos(schema_->size() + 1, 0); std::partial_sum(sizeof_infos.begin(), sizeof_infos.end(), offset_infos.begin() + 1); std::vector> entities(schema_->size()); for (int fid = 0; fid < schema_->size(); ++fid) { auto len = sizeof_infos[fid]; entities[fid].resize(len * size); } std::vector uids(size); std::vector timestamps(size); // #pragma omp parallel for for (int index = 0; index < size; ++index) { auto [t, uid, order_index] = ordering[index]; timestamps[index] = t; uids[index] = uid; for (int fid = 0; fid < schema_->size(); ++fid) { auto len = sizeof_infos[fid]; auto offset = offset_infos[fid]; auto src = raw_data + offset + order_index * len_per_row; auto dst = entities[fid].data() + index * len; memcpy(dst, src, len); } } // step 4: fill into Segment.ConcurrentVector record_.timestamps_.set_data(reserved_begin, timestamps.data(), size); record_.uids_.set_data(reserved_begin, uids.data(), size); for (int fid = 0; fid < schema_->size(); ++fid) { auto field_offset = FieldOffset(fid); record_.get_base_entity(field_offset)->set_data_raw(reserved_begin, entities[fid].data(), size); } for (int i = 0; i < uids.size(); ++i) { auto uid = uids[i]; // NOTE: this must be the last step, cannot be put above uid2offset_.insert(std::make_pair(uid, reserved_begin + i)); } record_.ack_responder_.AddSegment(reserved_begin, reserved_begin + size); indexing_record_.UpdateResourceAck(record_.ack_responder_.GetAck() / chunk_size_, record_); return Status::OK(); } Status SegmentGrowingImpl::Delete(int64_t reserved_begin, int64_t size, const int64_t* uids_raw, const Timestamp* timestamps_raw) { std::vector> ordering; ordering.resize(size); // #pragma omp parallel for for (int i = 0; i < size; ++i) { ordering[i] = std::make_tuple(timestamps_raw[i], uids_raw[i]); } std::sort(ordering.begin(), ordering.end()); std::vector uids(size); std::vector timestamps(size); // #pragma omp parallel for for (int index = 0; index < size; ++index) { auto [t, uid] = ordering[index]; timestamps[index] = t; uids[index] = uid; } deleted_record_.timestamps_.set_data(reserved_begin, timestamps.data(), size); deleted_record_.uids_.set_data(reserved_begin, uids.data(), size); deleted_record_.ack_responder_.AddSegment(reserved_begin, reserved_begin + size); return Status::OK(); // for (int i = 0; i < size; ++i) { // auto key = row_ids[i]; // auto time = timestamps[i]; // delete_logs_.insert(std::make_pair(key, time)); // } // return Status::OK(); } Status SegmentGrowingImpl::Close() { if (this->record_.reserved != this->record_.ack_responder_.GetAck()) { PanicInfo("insert not ready"); } if (this->deleted_record_.reserved != this->deleted_record_.ack_responder_.GetAck()) { PanicInfo("delete not ready"); } state_ = SegmentState::Closed; return Status::OK(); } int64_t SegmentGrowingImpl::GetMemoryUsageInBytes() const { int64_t total_bytes = 0; int64_t ins_n = upper_align(record_.reserved, chunk_size_); total_bytes += ins_n * (schema_->get_total_sizeof() + 16 + 1); int64_t del_n = upper_align(deleted_record_.reserved, chunk_size_); total_bytes += del_n * (16 * 2); return total_bytes; } QueryResult SegmentGrowingImpl::Search(const query::Plan* plan, const query::PlaceholderGroup** placeholder_groups, const Timestamp* timestamps, int64_t num_groups) const { Assert(num_groups == 1); query::ExecPlanNodeVisitor visitor(*this, timestamps[0], *placeholder_groups[0]); auto results = visitor.get_moved_result(*plan->plan_node_); return results; } void SegmentGrowingImpl::FillTargetEntry(const query::Plan* plan, QueryResult& results) const { AssertInfo(plan, "empty plan"); auto size = results.result_distances_.size(); Assert(results.internal_seg_offsets_.size() == size); Assert(results.result_offsets_.size() == size); Assert(results.row_data_.size() == 0); if (plan->schema_.get_is_auto_id()) { auto& uids = record_.uids_; for (int64_t i = 0; i < size; ++i) { auto seg_offset = results.internal_seg_offsets_[i]; auto row_id = seg_offset == -1 ? -1 : uids[seg_offset]; std::vector blob(sizeof(row_id)); memcpy(blob.data(), &row_id, sizeof(row_id)); results.row_data_.emplace_back(std::move(blob)); } } else { auto key_offset_opt = schema_->get_primary_key_offset(); Assert(key_offset_opt.has_value()); auto key_offset = key_offset_opt.value(); auto& field_meta = schema_->operator[](key_offset); Assert(field_meta.get_data_type() == DataType::INT64); auto uids = record_.get_entity(key_offset); for (int64_t i = 0; i < size; ++i) { auto seg_offset = results.internal_seg_offsets_[i]; auto row_id = seg_offset == -1 ? -1 : uids->operator[](seg_offset); std::vector blob(sizeof(row_id)); memcpy(blob.data(), &row_id, sizeof(row_id)); results.row_data_.emplace_back(std::move(blob)); } } } Status SegmentGrowingImpl::LoadIndexing(const LoadIndexInfo& info) { auto field_offset = schema_->get_offset(FieldName(info.field_name)); Assert(info.index_params.count("metric_type")); auto metric_type_str = info.index_params.at("metric_type"); sealed_indexing_record_.add_entry(field_offset, GetMetricType(metric_type_str), info.index); return Status::OK(); } SpanBase SegmentGrowingImpl::chunk_data_impl(FieldOffset field_offset, int64_t chunk_id) const { auto vec = get_insert_record().get_base_entity(field_offset); return vec->get_span_base(chunk_id); } int64_t SegmentGrowingImpl::num_chunk_data() const { auto size = get_insert_record().ack_responder_.GetAck(); return upper_div(size, chunk_size_); } } // namespace milvus::segcore