// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include #include #include "../Algorithm.h" #include "Action.h" #include "scheduler/tasklabel/SpecResLabel.h" #include "src/cache/GpuCacheMgr.h" #include "src/server/Config.h" namespace milvus { namespace scheduler { std::vector get_neighbours(const ResourcePtr& self) { std::vector neighbours; for (auto& neighbour_node : self->GetNeighbours()) { auto node = neighbour_node.neighbour_node; if (not node) continue; auto resource = std::static_pointer_cast(node); // if (not resource->HasExecutor()) continue; neighbours.emplace_back(resource); } return neighbours; } std::vector> get_neighbours_with_connetion(const ResourcePtr& self) { std::vector> neighbours; for (auto& neighbour_node : self->GetNeighbours()) { auto node = neighbour_node.neighbour_node; if (not node) continue; auto resource = std::static_pointer_cast(node); // if (not resource->HasExecutor()) continue; Connection conn = neighbour_node.connection; neighbours.emplace_back(std::make_pair(resource, conn)); } return neighbours; } void Action::PushTaskToNeighbourRandomly(TaskTableItemPtr task_item, const ResourcePtr& self) { auto neighbours = get_neighbours_with_connetion(self); if (not neighbours.empty()) { std::vector speeds; uint64_t total_speed = 0; for (auto& neighbour : neighbours) { uint64_t speed = neighbour.second.speed(); speeds.emplace_back(speed); total_speed += speed; } unsigned seed1 = std::chrono::system_clock::now().time_since_epoch().count(); std::mt19937 mt(seed1); std::uniform_int_distribution dist(0, total_speed); uint64_t index = 0; int64_t rd_speed = dist(mt); for (uint64_t i = 0; i < speeds.size(); ++i) { rd_speed -= speeds[i]; if (rd_speed <= 0) { neighbours[i].first->task_table().Put(task_item->task, task_item); return; } } } else { // TODO(wxyu): process } } void Action::PushTaskToAllNeighbour(TaskTableItemPtr task_item, const ResourcePtr& self) { auto neighbours = get_neighbours(self); for (auto& neighbour : neighbours) { neighbour->task_table().Put(task_item->task, task_item); } } void Action::PushTaskToResource(TaskTableItemPtr task_item, const ResourcePtr& dest) { dest->task_table().Put(task_item->task, task_item); } void Action::DefaultLabelTaskScheduler(const ResourceMgrPtr& res_mgr, ResourcePtr resource, std::shared_ptr event) { if (not resource->HasExecutor() && event->task_table_item_->Move()) { auto task_item = event->task_table_item_; auto task = event->task_table_item_->task; auto search_task = std::static_pointer_cast(task); bool moved = false; // to support test task, REFACTOR if (resource->type() == ResourceType::CPU) { if (auto index_engine = search_task->index_engine_) { auto location = index_engine->GetLocation(); for (auto i = 0; i < res_mgr->GetNumGpuResource(); ++i) { auto index = milvus::cache::GpuCacheMgr::GetInstance(i)->GetIndex(location); if (index != nullptr) { moved = true; auto dest_resource = res_mgr->GetResource(ResourceType::GPU, i); PushTaskToResource(event->task_table_item_, dest_resource); break; } } } } if (not moved) { PushTaskToNeighbourRandomly(task_item, resource); } } } void Action::SpecifiedResourceLabelTaskScheduler(const ResourceMgrPtr& res_mgr, ResourcePtr resource, std::shared_ptr event) { auto task_item = event->task_table_item_; auto task = event->task_table_item_->task; // if (resource->type() == ResourceType::DISK) { // // step 1: calculate shortest path per resource, from disk to compute resource // auto compute_resources = res_mgr->GetComputeResources(); // std::vector> paths; // std::vector transport_costs; // for (auto& res : compute_resources) { // std::vector path; // uint64_t transport_cost = ShortestPath(resource, res, res_mgr, path); // transport_costs.push_back(transport_cost); // paths.emplace_back(path); // } // if (task->job_.lock()->type() == JobType::BUILD) { // // step2: Read device id in config // // get build index gpu resource // server::Config& config = server::Config::GetInstance(); // int32_t build_index_gpu; // Status stat = config.GetResourceConfigIndexBuildDevice(build_index_gpu); // // bool find_gpu_res = false; // if (res_mgr->GetResource(ResourceType::GPU, build_index_gpu) != nullptr) { // for (uint64_t i = 0; i < compute_resources.size(); ++i) { // if (compute_resources[i]->name() == // res_mgr->GetResource(ResourceType::GPU, build_index_gpu)->name()) { // find_gpu_res = true; // Path task_path(paths[i], paths[i].size() - 1); // task->path() = task_path; // break; // } // } // } // if (not find_gpu_res) { // task->path() = Path(paths[0], paths[0].size() - 1); // } // } // } if (resource->name() == task->path().Last()) { resource->WakeupExecutor(); } else { auto next_res_name = task->path().Next(); auto next_res = res_mgr->GetResource(next_res_name); // if (event->task_table_item_->Move()) { // next_res->task_table().Put(task); // } event->task_table_item_->Move(); next_res->task_table().Put(task, task_item); } } } // namespace scheduler } // namespace milvus