related: #36380
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
- Core invariant: aggregation is centralized and schema-aware — all
aggregate functions are created via the exec Aggregate registry
(milvus::exec::Aggregate) and validated by ValidateAggFieldType, use a
single in-memory accumulator layout (Accumulator/RowContainer) and
grouping primitives (GroupingSet, HashTable, VectorHasher), ensuring
consistent typing, null semantics and offsets across planner → exec →
reducer conversion paths (toAggregateInfo, Aggregate::create,
GroupingSet, AggResult converters).
- Removed / simplified logic: removed ad‑hoc count/group-by and reducer
code (CountNode/PhyCountNode, GroupByNode/PhyGroupByNode, cntReducer and
its tests) and consolidated into a unified AggregationNode →
PhyAggregationNode + GroupingSet + HashTable execution path and
centralized reducers (MilvusAggReducer, InternalAggReducer,
SegcoreAggReducer). AVG now implemented compositionally (SUM + COUNT)
rather than a bespoke operator, eliminating duplicate implementations.
- Why this does NOT cause data loss or regressions: existing data-access
and serialization paths are preserved and explicitly validated —
bulk_subscript / bulk_script_field_data and FieldData creation are used
for output materialization; converters (InternalResult2AggResult ↔
AggResult2internalResult, SegcoreResults2AggResult ↔
AggResult2segcoreResult) enforce shape/type/row-count validation; proxy
and plan-level checks (MatchAggregationExpression,
translateOutputFields, ValidateAggFieldType, translateGroupByFieldIds)
reject unsupported inputs (ARRAY/JSON, unsupported datatypes) early.
Empty-result generation and explicit error returns guard against silent
corruption.
- New capability and scope: end-to-end GROUP BY and aggregation support
added across the stack — proto (plan.proto, RetrieveRequest fields
group_by_field_ids/aggregates), planner nodes (AggregationNode,
ProjectNode, SearchGroupByNode), exec operators (PhyAggregationNode,
PhyProjectNode) and aggregation core (Aggregate implementations:
Sum/Count/Min/Max, SimpleNumericAggregate, RowContainer, GroupingSet,
HashTable) plus proxy/querynode reducers and tests — enabling grouped
and global aggregation (sum, count, min, max, avg via sum+count) with
schema-aware validation and reduction.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
Signed-off-by: MrPresent-Han <chun.han@gmail.com>
Co-authored-by: MrPresent-Han <chun.han@gmail.com>
issue: https://github.com/milvus-io/milvus/issues/46517
ref: https://github.com/milvus-io/milvus/issues/42148
This PR supports match operator family with struct array and brute force
search only.
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
- Core invariant: match operators only target struct-array element-level
predicates and assume callers provide a correct row_start so element
indices form a contiguous range; IArrayOffsets implementations convert
row-level bitmaps/rows (starting at row_start) into element-level
bitmaps or a contiguous element-offset vector used by brute-force
evaluation.
- New capability added: end-to-end support for MATCH_* semantics
(match_any, match_all, match_least, match_most, match_exact) — parser
(grammar + proto), planner (ParseMatchExprs), expr model
(expr::MatchExpr), compilation (Expr→PhyMatchFilterExpr), execution
(PhyMatchFilterExpr::Eval uses element offsets/bitmaps), and unit tests
(MatchExprTest + parser tests). Implementation currently works for
struct-array inputs and uses brute-force element counting via
RowBitsetToElementOffsets/RowBitsetToElementBitset.
- Logic removed or simplified and why: removed the ad-hoc
DocBitsetToElementOffsets helper and consolidated offset/bitset
derivation into IArrayOffsets::RowBitsetToElementOffsets and a
row_start-aware RowBitsetToElementBitset, and removed EvalCtx overloads
that embedded ExprSet (now EvalCtx(exec_ctx, offset_input)). This
centralizes array-layout logic in ArrayOffsets and removes duplicated
offset conversion and EvalCtx variants that were redundant for
element-level evaluation.
- No data loss / no behavior regression: persistent formats are
unchanged (no proto storage or on-disk layout changed); callers were
updated to supply row_start and now route through the centralized
ArrayOffsets APIs which still use the authoritative
row_to_element_start_ mapping, preserving exact element index mappings.
Eval logic changes are limited to in-memory plumbing (how
offsets/bitmaps are produced and how EvalCtx is constructed); expression
evaluation still invokes exprs_->Eval where needed, so existing behavior
and stored data remain intact.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
issue: https://github.com/milvus-io/milvus/issues/42148
For a vector field inside a STRUCT, since a STRUCT can only appear as
the element type of an ARRAY field, the vector field in STRUCT is
effectively an array of vectors, i.e. an embedding list.
Milvus already supports searching embedding lists with metrics whose
names start with the prefix MAX_SIM_.
This PR allows Milvus to search embeddings inside an embedding list
using the same metrics as normal embedding fields. Each embedding in the
list is treated as an independent vector and participates in ANN search.
Further, since STRUCT may contain scalar fields that are highly related
to the embedding field, this PR introduces an element-level filter
expression to refine search results.
The grammar of the element-level filter is:
element_filter(structFieldName, $[subFieldName] == 3)
where $[subFieldName] refers to the value of subFieldName in each
element of the STRUCT array structFieldName.
It can be combined with existing filter expressions, for example:
"varcharField == 'aaa' && element_filter(struct_field, $[struct_int] ==
3)"
A full example:
```
struct_schema = milvus_client.create_struct_field_schema()
struct_schema.add_field("struct_str", DataType.VARCHAR, max_length=65535)
struct_schema.add_field("struct_int", DataType.INT32)
struct_schema.add_field("struct_float_vec", DataType.FLOAT_VECTOR, dim=EMBEDDING_DIM)
schema.add_field(
"struct_field",
datatype=DataType.ARRAY,
element_type=DataType.STRUCT,
struct_schema=struct_schema,
max_capacity=1000,
)
...
filter = "varcharField == 'aaa' && element_filter(struct_field, $[struct_int] == 3 && $[struct_str] == 'abc')"
res = milvus_client.search(
COLLECTION_NAME,
data=query_embeddings,
limit=10,
anns_field="struct_field[struct_float_vec]",
filter=filter,
output_fields=["struct_field[struct_int]", "varcharField"],
)
```
TODO:
1. When an `element_filter` expression is used, a regular filter
expression must also be present. Remove this restriction.
2. Implement `element_filter` expressions in the `query`.
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
issue: #43427
This pr's main goal is merge #37417 to milvus 2.5 without conflicts.
# Main Goals
1. Create and describe collections with geospatial type
2. Insert geospatial data into the insert binlog
3. Load segments containing geospatial data into memory
4. Enable query and search can display geospatial data
5. Support using GIS funtions like ST_EQUALS in query
6. Support R-Tree index for geometry type
# Solution
1. **Add Type**: Modify the Milvus core by adding a Geospatial type in
both the C++ and Go code layers, defining the Geospatial data structure
and the corresponding interfaces.
2. **Dependency Libraries**: Introduce necessary geospatial data
processing libraries. In the C++ source code, use Conan package
management to include the GDAL library. In the Go source code, add the
go-geom library to the go.mod file.
3. **Protocol Interface**: Revise the Milvus protocol to provide
mechanisms for Geospatial message serialization and deserialization.
4. **Data Pipeline**: Facilitate interaction between the client and
proxy using the WKT format for geospatial data. The proxy will convert
all data into WKB format for downstream processing, providing column
data interfaces, segment encapsulation, segment loading, payload
writing, and cache block management.
5. **Query Operators**: Implement simple display and support for filter
queries. Initially, focus on filtering based on spatial relationships
for a single column of geospatial literal values, providing parsing and
execution for query expressions.Now only support brutal search
7. **Client Modification**: Enable the client to handle user input for
geospatial data and facilitate end-to-end testing.Check the modification
in pymilvus.
---------
Signed-off-by: Yinwei Li <yinwei.li@zilliz.com>
Signed-off-by: Cai Zhang <cai.zhang@zilliz.com>
Co-authored-by: ZhuXi <150327960+Yinwei-Yu@users.noreply.github.com>
And support set function mode and boost mode when run search with boost.
RandomScore support get random function score between [0, weight).
FunctionMode decide how to calculate boost score for multiple boost
function scores.
BoostMode decide how to calculate final score for origin score and boost
score.
relate: https://github.com/milvus-io/milvus/issues/43867
---------
Signed-off-by: aoiasd <zhicheng.yue@zilliz.com>
issue: https://github.com/milvus-io/milvus/issues/27467
>My plan is as follows.
>- [x] M1 Create collection with timestamptz field
>- [x] M2 Insert timestamptz field data
>- [x] M3 Retrieve timestamptz field data
>- [x] M4 Implement handoff
>- [x] M5 Implement compare operator
>- [x] M6 Implement extract operator
>- [x] M8 Support database/collection level default timezone
>- [x] M7 Support STL-SORT index for datatype timestamptz
---
The third PR of issue: https://github.com/milvus-io/milvus/issues/27467,
which completes M5, M6, M7, M8 described above.
## M8 Default Timezone
We will be able to use alter_collection() and alter_database() in a
future Python SDK release to modify the default timezone at the
collection or database level.
For insert requests, the timezone will be resolved using the following
order of precedence: String Literal-> Collection Default -> Database
Default.
For retrieval requests, the timezone will be resolved in this order:
Query Parameters -> Collection Default -> Database Default.
In both cases, the final fallback timezone is UTC.
## M5: Comparison Operators
We can now use the following expression format to filter on the
timestamptz field:
- `timestamptz_field [+/- INTERVAL 'interval_string'] {comparison_op}
ISO 'iso_string' `
- The interval_string follows the ISO 8601 duration format, for example:
P1Y2M3DT1H2M3S.
- The iso_string follows the ISO 8601 timestamp format, for example:
2025-01-03T00:00:00+08:00.
- Example expressions: "tsz + INTERVAL 'P0D' != ISO
'2025-01-03T00:00:00+08:00'" or "tsz != ISO
'2025-01-03T00:00:00+08:00'".
## M6: Extract
We will be able to extract sepecific time filed by kwargs in a future
Python SDK release.
The key is `time_fields`, and value should be one or more of "year,
month, day, hour, minute, second, microsecond", seperated by comma or
space. Then the result of each record would be an array of int64.
## M7: Indexing Support
Expressions without interval arithmetic can be accelerated using an
STL-SORT index. However, expressions that include interval arithmetic
cannot be indexed. This is because the result of an interval calculation
depends on the specific timestamp value. For example, adding one month
to a date in February results in a different number of added days than
adding one month to a date in March.
---
After this PR, the input / output type of timestamptz would be iso
string. Timestampz would be stored as timestamptz data, which is int64_t
finally.
> for more information, see https://en.wikipedia.org/wiki/ISO_8601
---------
Signed-off-by: xtx <xtianx@smail.nju.edu.cn>
Ref https://github.com/milvus-io/milvus/issues/42148
This PR supports create index for vector array (now, only for
`DataType.FLOAT_VECTOR`) and search on it.
The index type supported in this PR is `EMB_LIST_HNSW` and the metric
type is `MAX_SIM` only.
The way to use it:
```python
milvus_client = MilvusClient("xxx:19530")
schema = milvus_client.create_schema(enable_dynamic_field=True, auto_id=True)
...
struct_schema = milvus_client.create_struct_array_field_schema("struct_array_field")
...
struct_schema.add_field("struct_float_vec", DataType.ARRAY_OF_VECTOR, element_type=DataType.FLOAT_VECTOR, dim=128, max_capacity=1000)
...
schema.add_struct_array_field(struct_schema)
index_params = milvus_client.prepare_index_params()
index_params.add_index(field_name="struct_float_vec", index_type="EMB_LIST_HNSW", metric_type="MAX_SIM", index_params={"nlist": 128})
...
milvus_client.create_index(COLLECTION_NAME, schema=schema, index_params=index_params)
```
Note: This PR uses `Lims` to convey offsets of the vector array to
knowhere where vectors of multiple vector arrays are concatenated and we
need offsets to specify which vectors belong to which vector array.
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
issue: #39541
This PR implements random sample, the syntax is:
```
filter="random_sample(factor)"
or
filter="boolean_expression && random_sample(factor)"
where
factor is a float between (0, 1) and
boolean_expression is like
"1 <= number < 10", "color in ["read, "blue"]" or others
```
---------
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>