relate: https://github.com/milvus-io/milvus/issues/43687
We used to run the temporary analyzer and validate analyzer on the
proxy, but the proxy should not be a computation-heavy node. This PR
move all analyzer calculations to the streaming node.
---------
Signed-off-by: aoiasd <zhicheng.yue@zilliz.com>
Related to #44995
Added missing case for JSON data type in GetDefaultValue function to
properly retrieve default values for JSON fields. This prevents crashes
when enabling dynamic fields with default values during concurrent
insert operations.
Changes:
- Added JSON data type case in GetDefaultValue to return BytesData
- Added comprehensive tests for fillMissingFields covering JSON and
other data types with default values
- Added tests for nullable fields, required fields validation, and edge
cases
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
issue: #43427
This pr's main goal is merge #37417 to milvus 2.5 without conflicts.
# Main Goals
1. Create and describe collections with geospatial type
2. Insert geospatial data into the insert binlog
3. Load segments containing geospatial data into memory
4. Enable query and search can display geospatial data
5. Support using GIS funtions like ST_EQUALS in query
6. Support R-Tree index for geometry type
# Solution
1. **Add Type**: Modify the Milvus core by adding a Geospatial type in
both the C++ and Go code layers, defining the Geospatial data structure
and the corresponding interfaces.
2. **Dependency Libraries**: Introduce necessary geospatial data
processing libraries. In the C++ source code, use Conan package
management to include the GDAL library. In the Go source code, add the
go-geom library to the go.mod file.
3. **Protocol Interface**: Revise the Milvus protocol to provide
mechanisms for Geospatial message serialization and deserialization.
4. **Data Pipeline**: Facilitate interaction between the client and
proxy using the WKT format for geospatial data. The proxy will convert
all data into WKB format for downstream processing, providing column
data interfaces, segment encapsulation, segment loading, payload
writing, and cache block management.
5. **Query Operators**: Implement simple display and support for filter
queries. Initially, focus on filtering based on spatial relationships
for a single column of geospatial literal values, providing parsing and
execution for query expressions.Now only support brutal search
7. **Client Modification**: Enable the client to handle user input for
geospatial data and facilitate end-to-end testing.Check the modification
in pymilvus.
---------
Signed-off-by: Yinwei Li <yinwei.li@zilliz.com>
Signed-off-by: Cai Zhang <cai.zhang@zilliz.com>
Co-authored-by: ZhuXi <150327960+Yinwei-Yu@users.noreply.github.com>
Related to #41858#41951#42084
When insert msg consumer (pipeline/flowgraph) have newer schema than
insertMsg, it have to adapter the insert msg used old schema(missing
newly added field)
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
Related to #39173
`nullable` flag is crucial for serde logic of v2 writer, missing this
flag causes logic bug for v2 nullalbe data.
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
issue: #29419
added helper functions to parse JSON representation of sparse float
vectors, will be used by both the restful server and the import utils.
Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
add sparse float vector support to different milvus components,
including proxy, data node to receive and write sparse float vectors to
binlog, query node to handle search requests, index node to build index
for sparse float column, etc.
https://github.com/milvus-io/milvus/issues/29419
---------
Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
fix: #29757
In previous code, `ColumnBasedInsertMsgToInsertData` adds empty field if
the insertMsg parameter does not have the column schema defined. This
may lead to unexpected behavior of caller functions.
This PR:
- Add column missing check
- Add column length check
- Generate BlobInfo for ColumnBasedInsertMsgToInsertData result
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
Benchmark Milvus with https://github.com/qdrant/vector-db-benchmark and
specify the datasets as 'deep-image-96-angular'. Meanwhile, do perf
profiling during 'upload + index' stage of vector-db-benchmark and see
the following hot spots.
39.59%--github.com/milvus-io/milvus/internal/storage.MergeInsertData
|
|--21.43%--github.com/milvus-io/milvus/internal/storage.MergeFieldData
| |
| |--17.22%--runtime.memmove
| |
| |--1.53%--asm_exc_page_fault
| ......
|
|--18.16%--runtime.memmove
|
|--1.66%--asm_exc_page_fault
......
The hot code path is in storage.MergeInsertData() which updates
buffer.buffer by creating a new 'InsertData' instance and merging both
the old buffer.buffer and addedBuffer into it. When it calls golang
runtime.memmove to move buffer.buffer which is with big size (>1M), the
hot spots appear.
To avoid the above overhead, update storage.MergeInsertData() by
appending addedBuffer to buffer.buffer, instead of moving buffer.buffer
and addedBuffer to a new 'InsertData'. This change removes the hot spots
'runtime.memmove' from perf profiling output. Additionally, the 'upload
+ index' time, which is one performance metric of vector-db-benchmark,
is reduced around 60% with this change.
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>