6 Commits

Author SHA1 Message Date
Spade A
d6a428e880
feat: impl StructArray -- support create index for vector array (embedding list) and search on it (#43726)
Ref https://github.com/milvus-io/milvus/issues/42148

This PR supports create index for vector array (now, only for
`DataType.FLOAT_VECTOR`) and search on it.
The index type supported in this PR is `EMB_LIST_HNSW` and the metric
type is `MAX_SIM` only.

The way to use it:
```python
milvus_client = MilvusClient("xxx:19530")
schema = milvus_client.create_schema(enable_dynamic_field=True, auto_id=True)
...
struct_schema = milvus_client.create_struct_array_field_schema("struct_array_field")
...
struct_schema.add_field("struct_float_vec", DataType.ARRAY_OF_VECTOR, element_type=DataType.FLOAT_VECTOR, dim=128, max_capacity=1000)
...
schema.add_struct_array_field(struct_schema)
index_params = milvus_client.prepare_index_params()
index_params.add_index(field_name="struct_float_vec", index_type="EMB_LIST_HNSW", metric_type="MAX_SIM", index_params={"nlist": 128})
...
milvus_client.create_index(COLLECTION_NAME, schema=schema, index_params=index_params)
```

Note: This PR uses `Lims` to convey offsets of the vector array to
knowhere where vectors of multiple vector arrays are concatenated and we
need offsets to specify which vectors belong to which vector array.

---------

Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
2025-08-20 10:27:46 +08:00
Gao
81a0915c29
enhance: add milvus-common module to decouple knwhere & segcore (#43624)
issue: https://github.com/milvus-io/milvus/issues/42032
https://github.com/milvus-io/milvus/issues/41435

based on pr: https://github.com/milvus-io/milvus/pull/42124

---------

Signed-off-by: chasingegg <chao.gao@zilliz.com>
Co-authored-by: xianliang.li <xianliang.li@zilliz.com>
2025-08-11 14:09:42 +08:00
Spade A
864d1b93b1
enhance: enable stlsort with mmap support (#43359)
issue: https://github.com/milvus-io/milvus/issues/43358

---------

Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
2025-07-28 15:32:55 +08:00
Spade A
10fe53ff59
feat: support json for ngram (#43170)
Ref https://github.com/milvus-io/milvus/issues/42053

This PR enable ngram to support json data type.

---------

Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
2025-07-25 10:28:54 +08:00
Spade A
db91d85dbc
feat: more types of matches for ngram (#43081)
Ref https://github.com/milvus-io/milvus/issues/42053

This PR enable ngram to support more kinds of matches such as prefix and
postfix match.

---------

Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
2025-07-14 20:34:50 +08:00
Spade A
26ec841feb
feat: optimize Like query with n-gram (#41803)
Ref #42053

This is the first PR for optimizing `LIKE` with ngram inverted index.
Now, only VARCHAR data type is supported and only InnerMatch LIKE
(%xxx%) query is supported.


How to use it:
```
milvus_client = MilvusClient("http://localhost:19530")
schema = milvus_client.create_schema()
...
schema.add_field("content_ngram", DataType.VARCHAR, max_length=10000)
...
index_params = milvus_client.prepare_index_params()
index_params.add_index(field_name="content_ngram", index_type="NGRAM", index_name="ngram_index", min_gram=2, max_gram=3)
milvus_client.create_collection(COLLECTION_NAME, ...)
```

min_gram and max_gram controls how we tokenize the documents. For
example, for min_gram=2 and max_gram=4, we will tokenize each document
with 2-gram, 3-gram and 4-gram.

---------

Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
2025-07-01 10:08:44 +08:00