Ref https://github.com/milvus-io/milvus/issues/42148
This PR supports create index for vector array (now, only for
`DataType.FLOAT_VECTOR`) and search on it.
The index type supported in this PR is `EMB_LIST_HNSW` and the metric
type is `MAX_SIM` only.
The way to use it:
```python
milvus_client = MilvusClient("xxx:19530")
schema = milvus_client.create_schema(enable_dynamic_field=True, auto_id=True)
...
struct_schema = milvus_client.create_struct_array_field_schema("struct_array_field")
...
struct_schema.add_field("struct_float_vec", DataType.ARRAY_OF_VECTOR, element_type=DataType.FLOAT_VECTOR, dim=128, max_capacity=1000)
...
schema.add_struct_array_field(struct_schema)
index_params = milvus_client.prepare_index_params()
index_params.add_index(field_name="struct_float_vec", index_type="EMB_LIST_HNSW", metric_type="MAX_SIM", index_params={"nlist": 128})
...
milvus_client.create_index(COLLECTION_NAME, schema=schema, index_params=index_params)
```
Note: This PR uses `Lims` to convey offsets of the vector array to
knowhere where vectors of multiple vector arrays are concatenated and we
need offsets to specify which vectors belong to which vector array.
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
Ref #42053
This is the first PR for optimizing `LIKE` with ngram inverted index.
Now, only VARCHAR data type is supported and only InnerMatch LIKE
(%xxx%) query is supported.
How to use it:
```
milvus_client = MilvusClient("http://localhost:19530")
schema = milvus_client.create_schema()
...
schema.add_field("content_ngram", DataType.VARCHAR, max_length=10000)
...
index_params = milvus_client.prepare_index_params()
index_params.add_index(field_name="content_ngram", index_type="NGRAM", index_name="ngram_index", min_gram=2, max_gram=3)
milvus_client.create_collection(COLLECTION_NAME, ...)
```
min_gram and max_gram controls how we tokenize the documents. For
example, for min_gram=2 and max_gram=4, we will tokenize each document
with 2-gram, 3-gram and 4-gram.
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
https://github.com/milvus-io/milvus/issues/35528
This PR adds json index support for json and dynamic fields. Now you can
only do unary query like 'a["b"] > 1' using this index. We will support
more filter type later.
basic usage:
```
collection.create_index("json_field", {"index_type": "INVERTED",
"params": {"json_cast_type": DataType.STRING, "json_path":
'json_field["a"]["b"]'}})
```
There are some limits to use this index:
1. If a record does not have the json path you specify, it will be
ignored and there will not be an error.
2. If a value of the json path fails to be cast to the type you specify,
it will be ignored and there will not be an error.
3. A specific json path can have only one json index.
4. If you try to create more than one json indexes for one json field,
sdk(pymilvus<=2.4.7) may return immediately because of internal
implementation. This will be fixed in a later version.
---------
Signed-off-by: sunby <sunbingyi1992@gmail.com>
Related to #39596
When updating the build param configuration, the `Formatter` could be
used to do so and completed avoid touching the `overlay` config items
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
issue: #34298
because all vector index config checker has been moved into
vector_index_checker, then the useless checkers can be removed.
Signed-off-by: xianliang.li <xianliang.li@zilliz.com>