issue: #43427
This pr's main goal is merge #37417 to milvus 2.5 without conflicts.
# Main Goals
1. Create and describe collections with geospatial type
2. Insert geospatial data into the insert binlog
3. Load segments containing geospatial data into memory
4. Enable query and search can display geospatial data
5. Support using GIS funtions like ST_EQUALS in query
6. Support R-Tree index for geometry type
# Solution
1. **Add Type**: Modify the Milvus core by adding a Geospatial type in
both the C++ and Go code layers, defining the Geospatial data structure
and the corresponding interfaces.
2. **Dependency Libraries**: Introduce necessary geospatial data
processing libraries. In the C++ source code, use Conan package
management to include the GDAL library. In the Go source code, add the
go-geom library to the go.mod file.
3. **Protocol Interface**: Revise the Milvus protocol to provide
mechanisms for Geospatial message serialization and deserialization.
4. **Data Pipeline**: Facilitate interaction between the client and
proxy using the WKT format for geospatial data. The proxy will convert
all data into WKB format for downstream processing, providing column
data interfaces, segment encapsulation, segment loading, payload
writing, and cache block management.
5. **Query Operators**: Implement simple display and support for filter
queries. Initially, focus on filtering based on spatial relationships
for a single column of geospatial literal values, providing parsing and
execution for query expressions.Now only support brutal search
7. **Client Modification**: Enable the client to handle user input for
geospatial data and facilitate end-to-end testing.Check the modification
in pymilvus.
---------
Signed-off-by: Yinwei Li <yinwei.li@zilliz.com>
Signed-off-by: Cai Zhang <cai.zhang@zilliz.com>
Co-authored-by: ZhuXi <150327960+Yinwei-Yu@users.noreply.github.com>
issue: https://github.com/milvus-io/milvus/issues/27467
>My plan is as follows.
>- [x] M1 Create collection with timestamptz field
>- [x] M2 Insert timestamptz field data
>- [x] M3 Retrieve timestamptz field data
>- [x] M4 Implement handoff
>- [x] M5 Implement compare operator
>- [x] M6 Implement extract operator
>- [x] M8 Support database/collection level default timezone
>- [x] M7 Support STL-SORT index for datatype timestamptz
---
The third PR of issue: https://github.com/milvus-io/milvus/issues/27467,
which completes M5, M6, M7, M8 described above.
## M8 Default Timezone
We will be able to use alter_collection() and alter_database() in a
future Python SDK release to modify the default timezone at the
collection or database level.
For insert requests, the timezone will be resolved using the following
order of precedence: String Literal-> Collection Default -> Database
Default.
For retrieval requests, the timezone will be resolved in this order:
Query Parameters -> Collection Default -> Database Default.
In both cases, the final fallback timezone is UTC.
## M5: Comparison Operators
We can now use the following expression format to filter on the
timestamptz field:
- `timestamptz_field [+/- INTERVAL 'interval_string'] {comparison_op}
ISO 'iso_string' `
- The interval_string follows the ISO 8601 duration format, for example:
P1Y2M3DT1H2M3S.
- The iso_string follows the ISO 8601 timestamp format, for example:
2025-01-03T00:00:00+08:00.
- Example expressions: "tsz + INTERVAL 'P0D' != ISO
'2025-01-03T00:00:00+08:00'" or "tsz != ISO
'2025-01-03T00:00:00+08:00'".
## M6: Extract
We will be able to extract sepecific time filed by kwargs in a future
Python SDK release.
The key is `time_fields`, and value should be one or more of "year,
month, day, hour, minute, second, microsecond", seperated by comma or
space. Then the result of each record would be an array of int64.
## M7: Indexing Support
Expressions without interval arithmetic can be accelerated using an
STL-SORT index. However, expressions that include interval arithmetic
cannot be indexed. This is because the result of an interval calculation
depends on the specific timestamp value. For example, adding one month
to a date in February results in a different number of added days than
adding one month to a date in March.
---
After this PR, the input / output type of timestamptz would be iso
string. Timestampz would be stored as timestamptz data, which is int64_t
finally.
> for more information, see https://en.wikipedia.org/wiki/ISO_8601
---------
Signed-off-by: xtx <xtianx@smail.nju.edu.cn>
Related to #44150
This PR make enabling `dynamic schema` feature for an existing
collection possible.
This related API is to reuse `AlterCollection` and underhood its
redirected to `adding nullable json field`
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
1. Enable Milvus to read cipher configs
2. Enable cipher plugin in binlog reader and writer
3. Add a testCipher for unittests
4. Support pooling for datanode
5. Add encryption in storagev2
See also: #40321
Signed-off-by: yangxuan <xuan.yang@zilliz.com>
---------
Signed-off-by: yangxuan <xuan.yang@zilliz.com>
Ref https://github.com/milvus-io/milvus/issues/42148
This PR supports create index for vector array (now, only for
`DataType.FLOAT_VECTOR`) and search on it.
The index type supported in this PR is `EMB_LIST_HNSW` and the metric
type is `MAX_SIM` only.
The way to use it:
```python
milvus_client = MilvusClient("xxx:19530")
schema = milvus_client.create_schema(enable_dynamic_field=True, auto_id=True)
...
struct_schema = milvus_client.create_struct_array_field_schema("struct_array_field")
...
struct_schema.add_field("struct_float_vec", DataType.ARRAY_OF_VECTOR, element_type=DataType.FLOAT_VECTOR, dim=128, max_capacity=1000)
...
schema.add_struct_array_field(struct_schema)
index_params = milvus_client.prepare_index_params()
index_params.add_index(field_name="struct_float_vec", index_type="EMB_LIST_HNSW", metric_type="MAX_SIM", index_params={"nlist": 128})
...
milvus_client.create_index(COLLECTION_NAME, schema=schema, index_params=index_params)
```
Note: This PR uses `Lims` to convey offsets of the vector array to
knowhere where vectors of multiple vector arrays are concatenated and we
need offsets to specify which vectors belong to which vector array.
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
Ref https://github.com/milvus-io/milvus/issues/42148https://github.com/milvus-io/milvus/pull/42406 impls the segcore part of
storage for handling with VectorArray.
This PR:
1. impls the go part of storage for VectorArray
2. impls the collection creation with StructArrayField and VectorArray
3. insert and retrieve data from the collection.
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <u6748471@anu.edu.au>
Merge RootCoord, DataCoord And QueryCoord into MixCoord
Make Session into one
issue : https://github.com/milvus-io/milvus/issues/37764
---------
Signed-off-by: Xianhui.Lin <xianhui.lin@zilliz.com>
after the pr merged, we can support to insert, upsert, build index,
query, search in the added field.
can only do the above operates in added field after add field request
complete, which is a sync operate.
compact will be supported in the next pr.
#39718
---------
Signed-off-by: lixinguo <xinguo.li@zilliz.com>
Co-authored-by: lixinguo <xinguo.li@zilliz.com>
issue: #35563
1. Use an internal health checker to monitor the cluster's health state,
storing the latest state on the coordinator node. The CheckHealth
request retrieves the cluster's health from this latest state on the
proxy sides, which enhances cluster stability.
2. Each health check will assess all collections and channels, with
detailed failure messages temporarily saved in the latest state.
3. Use CheckHealth request instead of the heavy GetMetrics request on
the querynode and datanode
Signed-off-by: jaime <yun.zhang@zilliz.com>