19 Commits

Author SHA1 Message Date
Spade A
26ec841feb
feat: optimize Like query with n-gram (#41803)
Ref #42053

This is the first PR for optimizing `LIKE` with ngram inverted index.
Now, only VARCHAR data type is supported and only InnerMatch LIKE
(%xxx%) query is supported.


How to use it:
```
milvus_client = MilvusClient("http://localhost:19530")
schema = milvus_client.create_schema()
...
schema.add_field("content_ngram", DataType.VARCHAR, max_length=10000)
...
index_params = milvus_client.prepare_index_params()
index_params.add_index(field_name="content_ngram", index_type="NGRAM", index_name="ngram_index", min_gram=2, max_gram=3)
milvus_client.create_collection(COLLECTION_NAME, ...)
```

min_gram and max_gram controls how we tokenize the documents. For
example, for min_gram=2 and max_gram=4, we will tokenize each document
with 2-gram, 3-gram and 4-gram.

---------

Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
2025-07-01 10:08:44 +08:00
Bingyi Sun
cc5ac1c220
enhance: Support cast function for json index (#41949)
issue: #41948

---------

Signed-off-by: sunby <sunbingyi1992@gmail.com>
2025-06-05 19:42:32 +08:00
Bingyi Sun
4c08090687
feat: Add json index support for json contains expr (#41478)
issue: #35528

---------

Signed-off-by: sunby <sunbingyi1992@gmail.com>
2025-05-06 11:44:52 +08:00
Spade A
f552ec67dd
fix: support building tantivy index with low version(5) (#40822)
fix: https://github.com/milvus-io/milvus/issues/40823
To solve the problem in the issue, we have to support building tantivy
index with low version
for those query nodes with low tantivy version.

This PR does two things:
1. refactor codes for IndexWriterWrapper to make it concise
2. enable IndexWriterWrapper to build tantivy index by different tantivy
crate

---------

Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
2025-04-02 18:46:20 +08:00
Bingyi Sun
9676365af9
fix: Fix json index not equal filter (#40647)
issue: #35528

---------

Signed-off-by: sunby <sunbingyi1992@gmail.com>
2025-03-27 23:06:23 +08:00
Bingyi Sun
b59555057d
feat: support json index (#36750)
https://github.com/milvus-io/milvus/issues/35528

This PR adds json index support for json and dynamic fields. Now you can
only do unary query like 'a["b"] > 1' using this index. We will support
more filter type later.

basic usage:
```
collection.create_index("json_field", {"index_type": "INVERTED",
    "params": {"json_cast_type": DataType.STRING, "json_path":
'json_field["a"]["b"]'}})
```

There are some limits to use this index:
1. If a record does not have the json path you specify, it will be
ignored and there will not be an error.
2. If a value of the json path fails to be cast to the type you specify,
it will be ignored and there will not be an error.
3. A specific json path can have only one json index.
4. If you try to create more than one json indexes for one json field,
sdk(pymilvus<=2.4.7) may return immediately because of internal
implementation. This will be fixed in a later version.

---------

Signed-off-by: sunby <sunbingyi1992@gmail.com>
2025-02-15 14:06:15 +08:00
Spade A
8c4ba70a4c
fix: enable to build index with single segment (#39233)
fix https://github.com/milvus-io/milvus/issues/39232

---------

Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
2025-01-16 11:01:06 +08:00
Zhen Ye
3e788f0fbd
enhance: record memory size (uncompressed) item for index (#38770)
issue: #38715

- Current milvus use a serialized index size(compressed) for estimate
resource for loading.
- Add a new field `MemSize` (before compressing) for index to estimate
resource.

---------

Signed-off-by: chyezh <chyezh@outlook.com>
2025-01-14 10:33:06 +08:00
zhenshan.cao
aa247f192d
enhance: remove unused code for StorageV2 (#35132)
issue: https://github.com/milvus-io/milvus/issues/34168

Signed-off-by: zhenshan.cao <zhenshan.cao@zilliz.com>
2024-08-01 12:08:13 +08:00
Jiquan Long
3f46c6d459
feat: support inverted index (#28783)
issue: https://github.com/milvus-io/milvus/issues/27704

Add inverted index for some data types in Milvus. This index type can
save a lot of memory compared to loading all data into RAM and speed up
the term query and range query.

Supported: `INT8`, `INT16`, `INT32`, `INT64`, `FLOAT`, `DOUBLE`, `BOOL`
and `VARCHAR`.

Not supported: `ARRAY` and `JSON`.

Note:
- The inverted index for `VARCHAR` is not designed to serve full-text
search now. We will treat every row as a whole keyword instead of
tokenizing it into multiple terms.
- The inverted index don't support retrieval well, so if you create
inverted index for field, those operations which depend on the raw data
will fallback to use chunk storage, which will bring some performance
loss. For example, comparisons between two columns and retrieval of
output fields.

The inverted index is very easy to be used.

Taking below collection as an example:

```python
fields = [
		FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100),
		FieldSchema(name="int8", dtype=DataType.INT8),
		FieldSchema(name="int16", dtype=DataType.INT16),
		FieldSchema(name="int32", dtype=DataType.INT32),
		FieldSchema(name="int64", dtype=DataType.INT64),
		FieldSchema(name="float", dtype=DataType.FLOAT),
		FieldSchema(name="double", dtype=DataType.DOUBLE),
		FieldSchema(name="bool", dtype=DataType.BOOL),
		FieldSchema(name="varchar", dtype=DataType.VARCHAR, max_length=1000),
		FieldSchema(name="random", dtype=DataType.DOUBLE),
		FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim),
]
schema = CollectionSchema(fields)
collection = Collection("demo", schema)
```

Then we can simply create inverted index for field via:

```python
index_type = "INVERTED"
collection.create_index("int8", {"index_type": index_type})
collection.create_index("int16", {"index_type": index_type})
collection.create_index("int32", {"index_type": index_type})
collection.create_index("int64", {"index_type": index_type})
collection.create_index("float", {"index_type": index_type})
collection.create_index("double", {"index_type": index_type})
collection.create_index("bool", {"index_type": index_type})
collection.create_index("varchar", {"index_type": index_type})
```

Then, term query and range query on the field can be speed up
automatically by the inverted index:

```python
result = collection.query(expr='int64 in [1, 2, 3]', output_fields=["pk"])
result = collection.query(expr='int64 < 5', output_fields=["pk"])
result = collection.query(expr='int64 > 2997', output_fields=["pk"])
result = collection.query(expr='1 < int64 < 5', output_fields=["pk"])
```

---------

Signed-off-by: longjiquan <jiquan.long@zilliz.com>
2023-12-31 19:50:47 +08:00
Bingyi Sun
36f69ea031
feat: integrate storagev2 in building index of segcore (#28768)
issue: https://github.com/milvus-io/milvus/issues/28655

---------

Signed-off-by: sunby <sunbingyi1992@gmail.com>
2023-12-05 16:48:54 +08:00
foxspy
370b6fde58
milvus support multi index engine (#27178)
Co-authored-by: longjiquan <jiquan.long@zilliz.com>
2023-09-22 09:59:26 +08:00
xige-16
04082b3de2
Migrate the ability to upload and download binlog to cpp (#22984)
Signed-off-by: xige-16 <xi.ge@zilliz.com>
2023-06-25 14:38:44 +08:00
Cai Yudong
0e9a4478e3
Remove useless index mode (#22934)
Signed-off-by: Yudong Cai <yudong.cai@zilliz.com>
2023-03-23 21:39:59 +08:00
yah01
bdd6bc7695
Re-format cpp code (#22513)
Signed-off-by: yah01 <yang.cen@zilliz.com>
2023-03-02 15:55:49 +08:00
presburger
9950cacd10
support knowhere 2.0 (#21857)
Signed-off-by: Yusheng.Ma <Yusheng.Ma@zilliz.com>
2023-02-10 14:24:32 +08:00
xige-16
d4bc00423c
Fix start milvus failed on macos (#19394)
Signed-off-by: xige-16 <xi.ge@zilliz.com>

Signed-off-by: xige-16 <xi.ge@zilliz.com>
2022-09-23 16:54:50 +08:00
xige-16
428840178c
Support diskann index for vector field (#19093)
Signed-off-by: xige-16 <xi.ge@zilliz.com>

Signed-off-by: xige-16 <xi.ge@zilliz.com>
2022-09-21 20:16:51 +08:00
Jiquan Long
fd589baca7
Integrates marisa trie index (#16192)
Signed-off-by: dragondriver <jiquan.long@zilliz.com>
2022-04-01 15:31:29 +08:00