issue: #43427
This pr's main goal is merge #37417 to milvus 2.5 without conflicts.
# Main Goals
1. Create and describe collections with geospatial type
2. Insert geospatial data into the insert binlog
3. Load segments containing geospatial data into memory
4. Enable query and search can display geospatial data
5. Support using GIS funtions like ST_EQUALS in query
6. Support R-Tree index for geometry type
# Solution
1. **Add Type**: Modify the Milvus core by adding a Geospatial type in
both the C++ and Go code layers, defining the Geospatial data structure
and the corresponding interfaces.
2. **Dependency Libraries**: Introduce necessary geospatial data
processing libraries. In the C++ source code, use Conan package
management to include the GDAL library. In the Go source code, add the
go-geom library to the go.mod file.
3. **Protocol Interface**: Revise the Milvus protocol to provide
mechanisms for Geospatial message serialization and deserialization.
4. **Data Pipeline**: Facilitate interaction between the client and
proxy using the WKT format for geospatial data. The proxy will convert
all data into WKB format for downstream processing, providing column
data interfaces, segment encapsulation, segment loading, payload
writing, and cache block management.
5. **Query Operators**: Implement simple display and support for filter
queries. Initially, focus on filtering based on spatial relationships
for a single column of geospatial literal values, providing parsing and
execution for query expressions.Now only support brutal search
7. **Client Modification**: Enable the client to handle user input for
geospatial data and facilitate end-to-end testing.Check the modification
in pymilvus.
---------
Signed-off-by: Yinwei Li <yinwei.li@zilliz.com>
Signed-off-by: Cai Zhang <cai.zhang@zilliz.com>
Co-authored-by: ZhuXi <150327960+Yinwei-Yu@users.noreply.github.com>
issue: #38666
Add int8 support for autoindex to ensure it can be independently
configured. At the same time, remove the restriction on int8 type for
vectorDiskIndex (note that vectorDiskIndex only determines the building
and loading method of the index, not the index type).
Signed-off-by: xianliang.li <xianliang.li@zilliz.com>
Related to #44534
Datanode shall not use singleton fs after 2.6+. This patch make disk
file manager use filesystem passed by fileManagerContext instead of
errorous singleton one.
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
issue: https://github.com/milvus-io/milvus/issues/27467
>My plan is as follows.
>- [x] M1 Create collection with timestamptz field
>- [x] M2 Insert timestamptz field data
>- [x] M3 Retrieve timestamptz field data
>- [x] M4 Implement handoff
>- [x] M5 Implement compare operator
>- [x] M6 Implement extract operator
>- [x] M8 Support database/collection level default timezone
>- [x] M7 Support STL-SORT index for datatype timestamptz
---
The third PR of issue: https://github.com/milvus-io/milvus/issues/27467,
which completes M5, M6, M7, M8 described above.
## M8 Default Timezone
We will be able to use alter_collection() and alter_database() in a
future Python SDK release to modify the default timezone at the
collection or database level.
For insert requests, the timezone will be resolved using the following
order of precedence: String Literal-> Collection Default -> Database
Default.
For retrieval requests, the timezone will be resolved in this order:
Query Parameters -> Collection Default -> Database Default.
In both cases, the final fallback timezone is UTC.
## M5: Comparison Operators
We can now use the following expression format to filter on the
timestamptz field:
- `timestamptz_field [+/- INTERVAL 'interval_string'] {comparison_op}
ISO 'iso_string' `
- The interval_string follows the ISO 8601 duration format, for example:
P1Y2M3DT1H2M3S.
- The iso_string follows the ISO 8601 timestamp format, for example:
2025-01-03T00:00:00+08:00.
- Example expressions: "tsz + INTERVAL 'P0D' != ISO
'2025-01-03T00:00:00+08:00'" or "tsz != ISO
'2025-01-03T00:00:00+08:00'".
## M6: Extract
We will be able to extract sepecific time filed by kwargs in a future
Python SDK release.
The key is `time_fields`, and value should be one or more of "year,
month, day, hour, minute, second, microsecond", seperated by comma or
space. Then the result of each record would be an array of int64.
## M7: Indexing Support
Expressions without interval arithmetic can be accelerated using an
STL-SORT index. However, expressions that include interval arithmetic
cannot be indexed. This is because the result of an interval calculation
depends on the specific timestamp value. For example, adding one month
to a date in February results in a different number of added days than
adding one month to a date in March.
---
After this PR, the input / output type of timestamptz would be iso
string. Timestampz would be stored as timestamptz data, which is int64_t
finally.
> for more information, see https://en.wikipedia.org/wiki/ISO_8601
---------
Signed-off-by: xtx <xtianx@smail.nju.edu.cn>
issue: #44212
Implement search/query storage usage statistics in go side(result
reduce), only record storage usage in vector search C++ path. Need to be
implemented in query c++ path in next prs.
---------
Signed-off-by: chasingegg <chao.gao@zilliz.com>
Signed-off-by: marcelo.chen <marcelo.chen@zilliz.com>
Co-authored-by: marcelo.chen <marcelo.chen@zilliz.com>
issue: https://github.com/milvus-io/milvus/issues/42032
- Use bytes to estimate load resource in the whole estimation procedure
- Add num_rows and dim info for vector index to better estimate
- Disable eviction for tiered index's meta
---------
Signed-off-by: chasingegg <chao.gao@zilliz.com>
issue: https://github.com/milvus-io/milvus/issues/42148
Optimized from
Go VectorArray → VectorArray Proto → Binary → C++ VectorArray Proto →
C++ VectorArray local impl → Memory
to
Go VectorArray → Arrow ListArray → Memory
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
#42032
Also, fix the cacheoptfield method to work in storagev2.
Also, change the sparse related interface for knowhere version bump
#43974 .
Also, includes https://github.com/milvus-io/milvus/pull/44046 for metric
lost.
---------
Signed-off-by: chasingegg <chao.gao@zilliz.com>
Signed-off-by: marcelo.chen <marcelo.chen@zilliz.com>
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
Co-authored-by: marcelo.chen <marcelo.chen@zilliz.com>
Co-authored-by: Congqi Xia <congqi.xia@zilliz.com>
Ref https://github.com/milvus-io/milvus/issues/42148
This PR supports create index for vector array (now, only for
`DataType.FLOAT_VECTOR`) and search on it.
The index type supported in this PR is `EMB_LIST_HNSW` and the metric
type is `MAX_SIM` only.
The way to use it:
```python
milvus_client = MilvusClient("xxx:19530")
schema = milvus_client.create_schema(enable_dynamic_field=True, auto_id=True)
...
struct_schema = milvus_client.create_struct_array_field_schema("struct_array_field")
...
struct_schema.add_field("struct_float_vec", DataType.ARRAY_OF_VECTOR, element_type=DataType.FLOAT_VECTOR, dim=128, max_capacity=1000)
...
schema.add_struct_array_field(struct_schema)
index_params = milvus_client.prepare_index_params()
index_params.add_index(field_name="struct_float_vec", index_type="EMB_LIST_HNSW", metric_type="MAX_SIM", index_params={"nlist": 128})
...
milvus_client.create_index(COLLECTION_NAME, schema=schema, index_params=index_params)
```
Note: This PR uses `Lims` to convey offsets of the vector array to
knowhere where vectors of multiple vector arrays are concatenated and we
need offsets to specify which vectors belong to which vector array.
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
Related to #43655
This patch add a padding when writing mmap file for ScalarSortedIndex in
case of mmap falure due to 0 mmap length.
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
issue: #43088
issue: #43038
The current loading process:
* When loading an index, we first download the index files into a list
of buffers, say A
* then constructing(copying) them into a vector of FieldDatas(each file
is a FieldData), say B
* assembles them together as a huge BinarySet, say C
* lastly, copy into the actual index data structure, say D
The problem:
* We can see that, after each step, we don't need the data in previous
step.
* But currently, we release the memory of A, B, C only after we have
finished constructing D
* This leads to a up to 4x peak memory usage comparing with the raw
index size, during the loading process
* This PR allows timely releasing of B after we assembled C. So after
this PR, the peak memory usage during loading will be up to 3x of the
raw index size.
I will create another PR to release A after we created B, that seems
more complicated and need more work.
Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
issue: #41435
this is to prevent AI from thinking of our exception throwing as a
dangerous PANIC operation that terminates the program.
Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
fix: https://github.com/milvus-io/milvus/issues/43354
The current implementation of stdsort index is not supported for
std::string. Remove the code.
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Ref https://github.com/milvus-io/milvus/issues/42053
This PR enable ngram to support more kinds of matches such as prefix and
postfix match.
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>