storage v2 chunked seal segment loading is based on caching layer. A
cell unit in storage v2 is a parquet row group in remote object storage,
containing all fields. Therefore, each field needs a proxy to do related
one field operations.
<img width="965" alt="Screenshot 2025-04-28 at 10 59 30"
src="https://github.com/user-attachments/assets/83e93a10-3b1d-4066-ac17-b996d5650416"
/>
related: #39173
---------
Signed-off-by: shaoting-huang <shaoting.huang@zilliz.com>
Related to #39718Fixesmilvus-io/pymilvus#2771
This PR:
- Make AsyncRetrieve task triggers "schema check" logic as well
- Rename `AddField` related methods to align with code standard
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
Related to #39718
This PR:
- Add reopen logic for growing & sealed segments
- Lazy reopen when schema version increases
- Add FinishLoad api for loading progress
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
json stats add map null check before insert into tantivity. Json stats
index may fail if there is no data
issue:https://github.com/milvus-io/milvus/issues/41494
---------
Signed-off-by: Xianhui.Lin <xianhui.lin@zilliz.com>
Related to #39718
This PR:
- Use WAL broadcast timestamp as Collection update timestamp
- Remove request_fields size assertion
- Remove proxy schema cache loaded field check & skip related cases
- other minor issues
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
Optimized JSON filter execution by introducing
ProcessJsonStatsChunkPos() for unified position calculation and
GetNextBatchSize() for better batch processing.
Improved JSON key generation by replacing manual path joining with
milvus::Json::pointer() and adjusted slot size calculation for JSON key
index jobs.
Updated the task slot calculation logic in calculateStatsTaskSlot() to
handle the increased resource needs of JSON key index jobs.
issue: https://github.com/milvus-io/milvus/issues/41378https://github.com/milvus-io/milvus/issues/41218
---------
Signed-off-by: Xianhui.Lin <xianhui.lin@zilliz.com>
fix: #39755
The following shows a simple benchmark where insert 1M docs where all
rows are "hello", the latency is segcore level, CPU is 9900K:
master: 2.62ms
this PR: 2.11ms
bench mark code:
```
TEST(TextMatch, TestPerf) {
auto schema = GenTestSchema({}, true);
auto seg = CreateSealedSegment(schema, empty_index_meta);
int64_t N = 1000000;
uint64_t seed = 19190504;
auto raw_data = DataGen(schema, N, seed);
auto str_col = raw_data.raw_->mutable_fields_data()
->at(1)
.mutable_scalars()
->mutable_string_data()
->mutable_data();
for (int64_t i = 0; i < N - 1; i++) {
str_col->at(i) = "hello";
}
SealedLoadFieldData(raw_data, *seg);
seg->CreateTextIndex(FieldId(101));
auto now = std::chrono::high_resolution_clock::now();
auto expr = GetMatchExpr(schema, "hello", OpType::TextMatch);
auto final = ExecuteQueryExpr(expr, seg.get(), N, MAX_TIMESTAMP);
auto end = std::chrono::high_resolution_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - now);
std::cout << "TextMatch query time: " << duration.count() << "ms"
<< std::endl;
}
```
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
support parallel loading sealed and growing segments with storage v2
format by async reading row groups.
related: #39173
---------
Signed-off-by: shaoting-huang <shaoting.huang@zilliz.com>
Issue: #41210
After https://github.com/zilliztech/tantivy/pull/5, we can provide
milvus row id directly to tantivy rather than record it in the fast
field "doc_id".
So rather than search tantivy doc id and then get milvus row id from
"doc_id", now, the searched tantivy doc id is the milvus row id,
eliminating the expensive acquiring row id phase.
The following shows a simple benchmark where insert **1M** docs where
all rows are "hello", the latency is **segcore** level, CPU is 9900K:

**The latency is 2.02 and 2.1 times respectively.**
bench mark code:
```
TEST(TextMatch, TestPerf) {
auto schema = GenTestSchema({}, true);
auto seg = CreateSealedSegment(schema, empty_index_meta);
int64_t N = 1000000;
uint64_t seed = 19190504;
auto raw_data = DataGen(schema, N, seed);
auto str_col = raw_data.raw_->mutable_fields_data()
->at(1)
.mutable_scalars()
->mutable_string_data()
->mutable_data();
for (int64_t i = 0; i < N - 1; i++) {
str_col->at(i) = "hello";
}
SealedLoadFieldData(raw_data, *seg);
seg->CreateTextIndex(FieldId(101));
auto now = std::chrono::high_resolution_clock::now();
auto expr = GetMatchExpr(schema, "hello", OpType::TextMatch);
auto final = ExecuteQueryExpr(expr, seg.get(), N, MAX_TIMESTAMP);
auto end = std::chrono::high_resolution_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - now);
std::cout << "TextMatch query time: " << duration.count() << "ms"
<< std::endl;
}
```
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
issue: https://github.com/milvus-io/milvus/issues/40897
After this, the document add operations scheduling duration is decreased
roughly from 6s to 0.9s for the case in the issue.
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
issue: #41172
Elements with type int8 or int16 in Array is encoded using int32, so we
should parse it as int32 when creating index.
Signed-off-by: sunby <sunbingyi1992@gmail.com>
fix: https://github.com/milvus-io/milvus/issues/40823
To solve the problem in the issue, we have to support building tantivy
index with low version
for those query nodes with low tantivy version.
This PR does two things:
1. refactor codes for IndexWriterWrapper to make it concise
2. enable IndexWriterWrapper to build tantivy index by different tantivy
crate
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>