8 Commits

Author SHA1 Message Date
Patrick Weizhi Xu
0907d76253
enhance: pass partition key scalar info if enabled when build vector index (#29931)
issue: #29892 

Pass optional scalar IVF offsets to Cardinal

Signed-off-by: Patrick Weizhi Xu <weizhi.xu@zilliz.com>
2024-01-24 00:04:55 +08:00
Jiquan Long
3f46c6d459
feat: support inverted index (#28783)
issue: https://github.com/milvus-io/milvus/issues/27704

Add inverted index for some data types in Milvus. This index type can
save a lot of memory compared to loading all data into RAM and speed up
the term query and range query.

Supported: `INT8`, `INT16`, `INT32`, `INT64`, `FLOAT`, `DOUBLE`, `BOOL`
and `VARCHAR`.

Not supported: `ARRAY` and `JSON`.

Note:
- The inverted index for `VARCHAR` is not designed to serve full-text
search now. We will treat every row as a whole keyword instead of
tokenizing it into multiple terms.
- The inverted index don't support retrieval well, so if you create
inverted index for field, those operations which depend on the raw data
will fallback to use chunk storage, which will bring some performance
loss. For example, comparisons between two columns and retrieval of
output fields.

The inverted index is very easy to be used.

Taking below collection as an example:

```python
fields = [
		FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100),
		FieldSchema(name="int8", dtype=DataType.INT8),
		FieldSchema(name="int16", dtype=DataType.INT16),
		FieldSchema(name="int32", dtype=DataType.INT32),
		FieldSchema(name="int64", dtype=DataType.INT64),
		FieldSchema(name="float", dtype=DataType.FLOAT),
		FieldSchema(name="double", dtype=DataType.DOUBLE),
		FieldSchema(name="bool", dtype=DataType.BOOL),
		FieldSchema(name="varchar", dtype=DataType.VARCHAR, max_length=1000),
		FieldSchema(name="random", dtype=DataType.DOUBLE),
		FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim),
]
schema = CollectionSchema(fields)
collection = Collection("demo", schema)
```

Then we can simply create inverted index for field via:

```python
index_type = "INVERTED"
collection.create_index("int8", {"index_type": index_type})
collection.create_index("int16", {"index_type": index_type})
collection.create_index("int32", {"index_type": index_type})
collection.create_index("int64", {"index_type": index_type})
collection.create_index("float", {"index_type": index_type})
collection.create_index("double", {"index_type": index_type})
collection.create_index("bool", {"index_type": index_type})
collection.create_index("varchar", {"index_type": index_type})
```

Then, term query and range query on the field can be speed up
automatically by the inverted index:

```python
result = collection.query(expr='int64 in [1, 2, 3]', output_fields=["pk"])
result = collection.query(expr='int64 < 5', output_fields=["pk"])
result = collection.query(expr='int64 > 2997', output_fields=["pk"])
result = collection.query(expr='1 < int64 < 5', output_fields=["pk"])
```

---------

Signed-off-by: longjiquan <jiquan.long@zilliz.com>
2023-12-31 19:50:47 +08:00
foxspy
370b6fde58
milvus support multi index engine (#27178)
Co-authored-by: longjiquan <jiquan.long@zilliz.com>
2023-09-22 09:59:26 +08:00
Cai Yudong
0e9a4478e3
Remove useless index mode (#22934)
Signed-off-by: Yudong Cai <yudong.cai@zilliz.com>
2023-03-23 21:39:59 +08:00
presburger
9950cacd10
support knowhere 2.0 (#21857)
Signed-off-by: Yusheng.Ma <Yusheng.Ma@zilliz.com>
2023-02-10 14:24:32 +08:00
xige-16
a1db9038fb
Move disk index params to config file (#19714)
Signed-off-by: xige-16 <xi.ge@zilliz.com>

Signed-off-by: xige-16 <xi.ge@zilliz.com>
2022-10-14 17:51:24 +08:00
xige-16
428840178c
Support diskann index for vector field (#19093)
Signed-off-by: xige-16 <xi.ge@zilliz.com>

Signed-off-by: xige-16 <xi.ge@zilliz.com>
2022-09-21 20:16:51 +08:00
Jiquan Long
fd589baca7
Integrates marisa trie index (#16192)
Signed-off-by: dragondriver <jiquan.long@zilliz.com>
2022-04-01 15:31:29 +08:00