7 Commits

Author SHA1 Message Date
Buqian Zheng
3de904c7ea
feat: add cachinglayer to sealed segment (#41436)
issue: https://github.com/milvus-io/milvus/issues/41435

---------

Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
2025-04-28 10:52:40 +08:00
zhagnlu
0d7ea8ec42
enhance: Enhance and correct exception module (#33705)
#33704

Signed-off-by: luzhang <luzhang@zilliz.com>
Co-authored-by: luzhang <luzhang@zilliz.com>
2024-06-23 21:22:01 +08:00
yihao.dai
5cf4161394
fix: Fix exception info is missing (#33393)
Replace based std::exception to prevent "object slicing"

issue: https://github.com/milvus-io/milvus/issues/33392

Signed-off-by: bigsheeper <yihao.dai@zilliz.com>
2024-05-27 14:33:41 +08:00
Jiquan Long
3f46c6d459
feat: support inverted index (#28783)
issue: https://github.com/milvus-io/milvus/issues/27704

Add inverted index for some data types in Milvus. This index type can
save a lot of memory compared to loading all data into RAM and speed up
the term query and range query.

Supported: `INT8`, `INT16`, `INT32`, `INT64`, `FLOAT`, `DOUBLE`, `BOOL`
and `VARCHAR`.

Not supported: `ARRAY` and `JSON`.

Note:
- The inverted index for `VARCHAR` is not designed to serve full-text
search now. We will treat every row as a whole keyword instead of
tokenizing it into multiple terms.
- The inverted index don't support retrieval well, so if you create
inverted index for field, those operations which depend on the raw data
will fallback to use chunk storage, which will bring some performance
loss. For example, comparisons between two columns and retrieval of
output fields.

The inverted index is very easy to be used.

Taking below collection as an example:

```python
fields = [
		FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100),
		FieldSchema(name="int8", dtype=DataType.INT8),
		FieldSchema(name="int16", dtype=DataType.INT16),
		FieldSchema(name="int32", dtype=DataType.INT32),
		FieldSchema(name="int64", dtype=DataType.INT64),
		FieldSchema(name="float", dtype=DataType.FLOAT),
		FieldSchema(name="double", dtype=DataType.DOUBLE),
		FieldSchema(name="bool", dtype=DataType.BOOL),
		FieldSchema(name="varchar", dtype=DataType.VARCHAR, max_length=1000),
		FieldSchema(name="random", dtype=DataType.DOUBLE),
		FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim),
]
schema = CollectionSchema(fields)
collection = Collection("demo", schema)
```

Then we can simply create inverted index for field via:

```python
index_type = "INVERTED"
collection.create_index("int8", {"index_type": index_type})
collection.create_index("int16", {"index_type": index_type})
collection.create_index("int32", {"index_type": index_type})
collection.create_index("int64", {"index_type": index_type})
collection.create_index("float", {"index_type": index_type})
collection.create_index("double", {"index_type": index_type})
collection.create_index("bool", {"index_type": index_type})
collection.create_index("varchar", {"index_type": index_type})
```

Then, term query and range query on the field can be speed up
automatically by the inverted index:

```python
result = collection.query(expr='int64 in [1, 2, 3]', output_fields=["pk"])
result = collection.query(expr='int64 < 5', output_fields=["pk"])
result = collection.query(expr='int64 > 2997', output_fields=["pk"])
result = collection.query(expr='1 < int64 < 5', output_fields=["pk"])
```

---------

Signed-off-by: longjiquan <jiquan.long@zilliz.com>
2023-12-31 19:50:47 +08:00
yah01
30847cad3e
Handle exception while loading (#28304)
Signed-off-by: yah01 <yah2er0ne@outlook.com>
2023-11-09 17:59:12 +08:00
yah01
227d2c8b3a
Reduce loading index memory usage (#25698)
Signed-off-by: yah01 <yang.cen@zilliz.com>
2023-07-19 14:02:57 +08:00
yah01
dd5f896dc8
Load batch by batch (#25212)
This will significantly reduce the memory usage while loading
- 1x memory usage and MBs overhead for buffer (memory mode)
- only MBs overhead for buffer (mmap mode)

Signed-off-by: yah01 <yang.cen@zilliz.com>
2023-07-06 13:58:27 +08:00