related: #45993
Add nullable vector support in import utility layer
Key changes:
ImportV2 util:
- Add nullable vector types (FloatVector, Float16Vector, BFloat16Vector,
BinaryVector, SparseFloatVector, Int8Vector) to
AppendNullableDefaultFieldsData()
- Add tests for nullable vector field data appending
CSV/JSON/Numpy readers:
- Add nullPercent parameter to test data generation for better null
coverage
- Mark vector fields as nullable in test schemas
- Add test cases for nullable vector field parsing
- Refactor tests to use loop-based approach with 0%, 50%, 100% null
percentages
Parquet field reader:
- Add ReadNullableBinaryData() for nullable
BinaryVector/Float16Vector/BFloat16Vector
- Add ReadNullableFloatVectorData() for nullable FloatVector
- Add ReadNullableSparseFloatVectorData() for nullable SparseFloatVector
- Add ReadNullableInt8VectorData() for nullable Int8Vector
- Add ReadNullableStructData() for generic nullable struct data
- Update Next() to use nullable read methods when field is nullable
- Add null data validation for non-nullable fields
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
- Core invariant: import must preserve per-row alignment and validity
for every field — nullable vector fields are expected to be encoded with
per-row validity masks and all readers/writers must emit arrays aligned
to original input rows (null entries represented explicitly).
- New feature & scope: adds end-to-end nullable-vector support in the
import utility layer — AppendNullableDefaultFieldsData in
internal/datanode/importv2/util.go now appends nil placeholders for
nullable vectors (FloatVector, Float16Vector, BFloat16Vector,
BinaryVector, SparseFloatVector, Int8Vector); parquet reader
(internal/util/importutilv2/parquet/field_reader.go) adds
ReadNullableBinaryData, ReadNullableFloatVectorData,
ReadNullableSparseFloatVectorData, ReadNullableInt8VectorData,
ReadNullableStructData and routes nullable branches to these helpers;
CSV/JSON/Numpy readers and test utilities updated to generate and
validate 0/50/100% null scenarios and mark vector fields as nullable in
test schemas.
- Logic removed / simplified: eliminates ad-hoc "parameter-invalid"
rejections for nullable vectors inside FieldReader.Next by centralizing
nullable handling into ReadNullable* helpers and shared validators
(getArrayDataNullable,
checkNullableVectorAlignWithDim/checkNullableVectorAligned), simplifying
control flow and removing scattered special-case checks.
- No data loss / no regression (concrete code paths): nulls are
preserved end-to-end — AppendNullableDefaultFieldsData explicitly
inserts nil entries per null row (datanode import append path);
ReadNullable*Data helpers return both data and []bool validity masks so
callers in field_reader.go and downstream readers receive exact per-row
validity; testutil.BuildSparseVectorData was extended to accept
validData so sparse vectors are materialized only for valid rows while
null rows are represented as missing. These concrete paths ensure null
rows are represented rather than dropped, preventing data loss or
behavioral regression.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
Signed-off-by: marcelo-cjl <marcelo.chen@zilliz.com>
issue: https://github.com/milvus-io/milvus/issues/45006
ref: https://github.com/milvus-io/milvus/issues/42148
Previsouly, the parquet import is implemented based on that the STRUCT
in the parquet files is hanlded in the way that each field in struct is
stored in a single column.
However, in the user's perspective, the array of STRUCT contains data is
something like STRUCT_A:
for one row, [struct{field1_1, field2_1, field3_1}, struct{field1_2,
field2_2, field3_2}, ...], rather than {[field1_1, field1_2, ...],
[field2_1, field2_2, ...], [field3_1, field3_2, field3_3, ...]}.
This PR fixes this.
---------
Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
issue: #43427
This pr's main goal is merge #37417 to milvus 2.5 without conflicts.
# Main Goals
1. Create and describe collections with geospatial type
2. Insert geospatial data into the insert binlog
3. Load segments containing geospatial data into memory
4. Enable query and search can display geospatial data
5. Support using GIS funtions like ST_EQUALS in query
6. Support R-Tree index for geometry type
# Solution
1. **Add Type**: Modify the Milvus core by adding a Geospatial type in
both the C++ and Go code layers, defining the Geospatial data structure
and the corresponding interfaces.
2. **Dependency Libraries**: Introduce necessary geospatial data
processing libraries. In the C++ source code, use Conan package
management to include the GDAL library. In the Go source code, add the
go-geom library to the go.mod file.
3. **Protocol Interface**: Revise the Milvus protocol to provide
mechanisms for Geospatial message serialization and deserialization.
4. **Data Pipeline**: Facilitate interaction between the client and
proxy using the WKT format for geospatial data. The proxy will convert
all data into WKB format for downstream processing, providing column
data interfaces, segment encapsulation, segment loading, payload
writing, and cache block management.
5. **Query Operators**: Implement simple display and support for filter
queries. Initially, focus on filtering based on spatial relationships
for a single column of geospatial literal values, providing parsing and
execution for query expressions.Now only support brutal search
7. **Client Modification**: Enable the client to handle user input for
geospatial data and facilitate end-to-end testing.Check the modification
in pymilvus.
---------
Signed-off-by: Yinwei Li <yinwei.li@zilliz.com>
Signed-off-by: Cai Zhang <cai.zhang@zilliz.com>
Co-authored-by: ZhuXi <150327960+Yinwei-Yu@users.noreply.github.com>
issue:https://github.com/milvus-io/milvus/issues/27576
# Main Goals
1. Create and describe collections with geospatial fields, enabling both
client and server to recognize and process geo fields.
2. Insert geospatial data as payload values in the insert binlog, and
print the values for verification.
3. Load segments containing geospatial data into memory.
4. Ensure query outputs can display geospatial data.
5. Support filtering on GIS functions for geospatial columns.
# Solution
1. **Add Type**: Modify the Milvus core by adding a Geospatial type in
both the C++ and Go code layers, defining the Geospatial data structure
and the corresponding interfaces.
2. **Dependency Libraries**: Introduce necessary geospatial data
processing libraries. In the C++ source code, use Conan package
management to include the GDAL library. In the Go source code, add the
go-geom library to the go.mod file.
3. **Protocol Interface**: Revise the Milvus protocol to provide
mechanisms for Geospatial message serialization and deserialization.
4. **Data Pipeline**: Facilitate interaction between the client and
proxy using the WKT format for geospatial data. The proxy will convert
all data into WKB format for downstream processing, providing column
data interfaces, segment encapsulation, segment loading, payload
writing, and cache block management.
5. **Query Operators**: Implement simple display and support for filter
queries. Initially, focus on filtering based on spatial relationships
for a single column of geospatial literal values, providing parsing and
execution for query expressions.
6. **Client Modification**: Enable the client to handle user input for
geospatial data and facilitate end-to-end testing.Check the modification
in pymilvus.
---------
Signed-off-by: tasty-gumi <1021989072@qq.com>
#36252
remove no need type check. if users use null type writer to write
parquet, hope it successfully.
Signed-off-by: lixinguo <xinguo.li@zilliz.com>
Co-authored-by: lixinguo <xinguo.li@zilliz.com>
Issue: #22837
including following changes:
1. Add API CreateInsertData() and BuildArrayData() in
internal/util/testutil
2. Remove duplicated test APIs from importutilv2 unittest and bulk
insert integration test
Signed-off-by: Cai Yudong <yudong.cai@zilliz.com>