fix: change upsert duplicate PK behavior from dedup to error (#45997)

issue: #44320

Replace the DeduplicateFieldData function with CheckDuplicatePkExist
that returns an error when duplicate primary keys are detected in the
same batch, instead of silently deduplicating.

Changes:
- Replace DeduplicateFieldData with CheckDuplicatePkExist in util.go
- Update upsertTask.PreExecute to return error on duplicate PKs
- Simplify helper function from findLastOccurrenceIndices to
hasDuplicates
- Update unit tests to verify the new error behavior
- Add Python integration tests for duplicate PK error cases

Signed-off-by: Wei Liu <wei.liu@zilliz.com>
This commit is contained in:
wei liu 2025-12-04 10:23:11 +08:00 committed by GitHub
parent a308331b81
commit f85e86a6ec
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 310 additions and 752 deletions

View File

@ -1078,18 +1078,13 @@ func (it *upsertTask) PreExecute(ctx context.Context) error {
log.Warn("fail to get primary field schema", zap.Error(err))
return err
}
deduplicatedFieldsData, newNumRows, err := DeduplicateFieldData(primaryFieldSchema, it.req.GetFieldsData(), schema)
duplicate, err := CheckDuplicatePkExist(primaryFieldSchema, it.req.GetFieldsData())
if err != nil {
log.Warn("fail to deduplicate upsert data", zap.Error(err))
log.Warn("fail to check duplicate primary keys", zap.Error(err))
return err
}
// dedup won't decrease numOfRows to 0
if newNumRows > 0 && newNumRows != it.req.NumRows {
log.Info("upsert data deduplicated",
zap.Uint32("original_num_rows", it.req.NumRows),
zap.Uint32("deduplicated_num_rows", newNumRows))
it.req.FieldsData = deduplicatedFieldsData
it.req.NumRows = newNumRows
if duplicate {
return merr.WrapErrParameterInvalidMsg("duplicate primary keys are not allowed in the same batch")
}
it.upsertMsg = &msgstream.UpsertMsg{

View File

@ -35,7 +35,6 @@ import (
"github.com/milvus-io/milvus/internal/proxy/shardclient"
"github.com/milvus-io/milvus/internal/util/function/embedding"
"github.com/milvus-io/milvus/internal/util/segcore"
"github.com/milvus-io/milvus/pkg/v2/common"
"github.com/milvus-io/milvus/pkg/v2/mq/msgstream"
"github.com/milvus-io/milvus/pkg/v2/proto/planpb"
"github.com/milvus-io/milvus/pkg/v2/proto/rootcoordpb"
@ -1467,402 +1466,137 @@ func TestGenNullableFieldData_GeometryAndTimestamptz(t *testing.T) {
})
}
func TestUpsertTask_PlanNamespace_AfterPreExecute(t *testing.T) {
mockey.PatchConvey("TestUpsertTask_PlanNamespace_AfterPreExecute", t, func() {
// Setup global meta cache and common mocks
globalMetaCache = &MetaCache{}
mockey.Mock(GetReplicateID).Return("", nil).Build()
mockey.Mock((*MetaCache).GetCollectionID).Return(int64(1001), nil).Build()
mockey.Mock((*MetaCache).GetCollectionInfo).Return(&collectionInfo{updateTimestamp: 12345}, nil).Build()
mockey.Mock((*MetaCache).GetPartitionInfo).Return(&partitionInfo{name: "_default"}, nil).Build()
mockey.Mock((*MetaCache).GetPartitionID).Return(int64(1002), nil).Build()
mockey.Mock(isPartitionKeyMode).Return(false, nil).Build()
mockey.Mock(validatePartitionTag).Return(nil).Build()
func TestUpsertTask_DuplicatePK_Int64(t *testing.T) {
schema := &schemapb.CollectionSchema{
Name: "test_duplicate_pk",
Fields: []*schemapb.FieldSchema{
{FieldID: 100, Name: "id", IsPrimaryKey: true, DataType: schemapb.DataType_Int64},
{FieldID: 101, Name: "value", DataType: schemapb.DataType_Int32},
},
}
// Schema with namespace enabled
mockey.Mock((*MetaCache).GetCollectionSchema).To(func(_ *MetaCache, _ context.Context, _ string, _ string) (*schemaInfo, error) {
info := createTestSchema()
info.CollectionSchema.Properties = append(info.CollectionSchema.Properties, &commonpb.KeyValuePair{Key: common.NamespaceEnabledKey, Value: "true"})
return info, nil
}).Build()
// Capture plan to verify namespace
var capturedPlan *planpb.PlanNode
mockey.Mock(planparserv2.CreateRequeryPlan).To(func(_ *schemapb.FieldSchema, _ *schemapb.IDs) *planpb.PlanNode {
capturedPlan = &planpb.PlanNode{}
return capturedPlan
}).Build()
// Mock query to return a valid result for queryPreExecute merge path
mockey.Mock((*Proxy).query).Return(&milvuspb.QueryResults{
Status: merr.Success(),
FieldsData: []*schemapb.FieldData{
// Data with duplicate primary keys: 1, 2, 1 (duplicate)
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
FieldId: 100,
Type: schemapb.DataType_Int64,
Field: &schemapb.FieldData_Scalars{Scalars: &schemapb.ScalarField{Data: &schemapb.ScalarField_LongData{LongData: &schemapb.LongArray{Data: []int64{1, 2}}}}},
},
{
FieldName: "name",
FieldId: 102,
Type: schemapb.DataType_VarChar,
Field: &schemapb.FieldData_Scalars{Scalars: &schemapb.ScalarField{Data: &schemapb.ScalarField_StringData{StringData: &schemapb.StringArray{Data: []string{"old1", "old2"}}}}},
},
{
FieldName: "vector",
FieldId: 101,
Type: schemapb.DataType_FloatVector,
Field: &schemapb.FieldData_Vectors{Vectors: &schemapb.VectorField{Dim: 128, Data: &schemapb.VectorField_FloatVector{FloatVector: &schemapb.FloatArray{Data: make([]float32, 256)}}}},
},
},
}, segcore.StorageCost{}, nil).Build()
// Build task
task := createTestUpdateTask()
ns := "ns-1"
task.req.PartialUpdate = true
task.req.Namespace = &ns
// Skip insert/delete heavy logic
mockey.Mock((*upsertTask).insertPreExecute).Return(nil).Build()
mockey.Mock((*upsertTask).deletePreExecute).Return(nil).Build()
err := task.PreExecute(context.Background())
assert.NoError(t, err)
assert.NotNil(t, capturedPlan)
assert.NotNil(t, capturedPlan.Namespace)
assert.Equal(t, *task.req.Namespace, *capturedPlan.Namespace)
})
}
func TestUpsertTask_Deduplicate_Int64PK(t *testing.T) {
// Test deduplication with Int64 primary key
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
IsPrimaryKey: true,
}
collSchema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
primaryFieldSchema,
{
Name: "float_field",
FieldID: 101,
DataType: schemapb.DataType_Float,
},
},
}
schema := newSchemaInfo(collSchema)
// Create field data with duplicate IDs: [1, 2, 3, 2, 1]
// Expected to keep last occurrence of each: [3, 2, 1] (indices 2, 3, 4)
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
Type: schemapb.DataType_Int64,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_LongData{
LongData: &schemapb.LongArray{
Data: []int64{1, 2, 3, 2, 1},
},
LongData: &schemapb.LongArray{Data: []int64{1, 2, 1}},
},
},
},
},
{
FieldName: "float_field",
Type: schemapb.DataType_Float,
FieldName: "value",
FieldId: 101,
Type: schemapb.DataType_Int32,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_FloatData{
FloatData: &schemapb.FloatArray{
Data: []float32{1.1, 2.2, 3.3, 2.4, 1.5},
},
Data: &schemapb.ScalarField_IntData{
IntData: &schemapb.IntArray{Data: []int32{100, 200, 300}},
},
},
},
},
}
deduplicatedFields, newNumRows, err := DeduplicateFieldData(primaryFieldSchema, fieldsData, schema)
// Test CheckDuplicatePkExist directly
primaryFieldSchema, err := typeutil.GetPrimaryFieldSchema(schema)
assert.NoError(t, err)
assert.Equal(t, uint32(3), newNumRows)
assert.Equal(t, 2, len(deduplicatedFields))
// Check deduplicated primary keys
pkField := deduplicatedFields[0]
pkData := pkField.GetScalars().GetLongData().GetData()
assert.Equal(t, 3, len(pkData))
assert.Equal(t, []int64{3, 2, 1}, pkData)
// Check corresponding float values (should be 3.3, 2.4, 1.5)
floatField := deduplicatedFields[1]
floatData := floatField.GetScalars().GetFloatData().GetData()
assert.Equal(t, 3, len(floatData))
assert.Equal(t, []float32{3.3, 2.4, 1.5}, floatData)
hasDuplicate, err := CheckDuplicatePkExist(primaryFieldSchema, fieldsData)
assert.NoError(t, err)
assert.True(t, hasDuplicate, "should detect duplicate primary keys")
}
func TestUpsertTask_Deduplicate_VarCharPK(t *testing.T) {
// Test deduplication with VarChar primary key
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_VarChar,
IsPrimaryKey: true,
}
collSchema := &schemapb.CollectionSchema{
func TestUpsertTask_DuplicatePK_VarChar(t *testing.T) {
schema := &schemapb.CollectionSchema{
Name: "test_duplicate_pk_varchar",
Fields: []*schemapb.FieldSchema{
primaryFieldSchema,
{
Name: "int_field",
FieldID: 101,
DataType: schemapb.DataType_Int64,
},
{FieldID: 100, Name: "id", IsPrimaryKey: true, DataType: schemapb.DataType_VarChar, TypeParams: []*commonpb.KeyValuePair{{Key: "max_length", Value: "100"}}},
{FieldID: 101, Name: "value", DataType: schemapb.DataType_Int32},
},
}
schema := newSchemaInfo(collSchema)
// Create field data with duplicate IDs: ["a", "b", "c", "b", "a"]
// Expected to keep last occurrence of each: ["c", "b", "a"] (indices 2, 3, 4)
// Data with duplicate primary keys: "a", "b", "a" (duplicate)
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
FieldId: 100,
Type: schemapb.DataType_VarChar,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_StringData{
StringData: &schemapb.StringArray{
Data: []string{"a", "b", "c", "b", "a"},
},
StringData: &schemapb.StringArray{Data: []string{"a", "b", "a"}},
},
},
},
},
{
FieldName: "int_field",
Type: schemapb.DataType_Int64,
FieldName: "value",
FieldId: 101,
Type: schemapb.DataType_Int32,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_LongData{
LongData: &schemapb.LongArray{
Data: []int64{100, 200, 300, 201, 101},
},
Data: &schemapb.ScalarField_IntData{
IntData: &schemapb.IntArray{Data: []int32{100, 200, 300}},
},
},
},
},
}
deduplicatedFields, newNumRows, err := DeduplicateFieldData(primaryFieldSchema, fieldsData, schema)
// Test CheckDuplicatePkExist directly
primaryFieldSchema, err := typeutil.GetPrimaryFieldSchema(schema)
assert.NoError(t, err)
assert.Equal(t, uint32(3), newNumRows)
assert.Equal(t, 2, len(deduplicatedFields))
// Check deduplicated primary keys
pkField := deduplicatedFields[0]
pkData := pkField.GetScalars().GetStringData().GetData()
assert.Equal(t, 3, len(pkData))
assert.Equal(t, []string{"c", "b", "a"}, pkData)
// Check corresponding int64 values (should be 300, 201, 101)
int64Field := deduplicatedFields[1]
int64Data := int64Field.GetScalars().GetLongData().GetData()
assert.Equal(t, 3, len(int64Data))
assert.Equal(t, []int64{300, 201, 101}, int64Data)
hasDuplicate, err := CheckDuplicatePkExist(primaryFieldSchema, fieldsData)
assert.NoError(t, err)
assert.True(t, hasDuplicate, "should detect duplicate primary keys")
}
func TestUpsertTask_Deduplicate_NoDuplicates(t *testing.T) {
// Test with no duplicates - should return original data
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
IsPrimaryKey: true,
}
collSchema := &schemapb.CollectionSchema{
func TestUpsertTask_NoDuplicatePK(t *testing.T) {
schema := &schemapb.CollectionSchema{
Name: "test_no_duplicate_pk",
Fields: []*schemapb.FieldSchema{
primaryFieldSchema,
{FieldID: 100, Name: "id", IsPrimaryKey: true, DataType: schemapb.DataType_Int64},
{FieldID: 101, Name: "value", DataType: schemapb.DataType_Int32},
},
}
schema := newSchemaInfo(collSchema)
// Data with unique primary keys: 1, 2, 3
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
FieldId: 100,
Type: schemapb.DataType_Int64,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_LongData{
LongData: &schemapb.LongArray{
Data: []int64{1, 2, 3, 4, 5},
LongData: &schemapb.LongArray{Data: []int64{1, 2, 3}},
},
},
},
},
},
}
deduplicatedFields, newNumRows, err := DeduplicateFieldData(primaryFieldSchema, fieldsData, schema)
assert.NoError(t, err)
assert.Equal(t, uint32(5), newNumRows)
assert.Equal(t, 1, len(deduplicatedFields))
// Should be unchanged
pkField := deduplicatedFields[0]
pkData := pkField.GetScalars().GetLongData().GetData()
assert.Equal(t, []int64{1, 2, 3, 4, 5}, pkData)
}
func TestUpsertTask_Deduplicate_WithVector(t *testing.T) {
// Test deduplication with vector field
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
IsPrimaryKey: true,
}
collSchema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
primaryFieldSchema,
{
Name: "vector",
FieldID: 101,
DataType: schemapb.DataType_FloatVector,
},
},
}
schema := newSchemaInfo(collSchema)
dim := 4
// Create field data with duplicate IDs: [1, 2, 1]
// Expected to keep indices [1, 2] (last occurrence of 2, last occurrence of 1)
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
Type: schemapb.DataType_Int64,
FieldName: "value",
FieldId: 101,
Type: schemapb.DataType_Int32,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_LongData{
LongData: &schemapb.LongArray{
Data: []int64{1, 2, 1},
},
},
},
},
},
{
FieldName: "vector",
Type: schemapb.DataType_FloatVector,
Field: &schemapb.FieldData_Vectors{
Vectors: &schemapb.VectorField{
Dim: int64(dim),
Data: &schemapb.VectorField_FloatVector{
FloatVector: &schemapb.FloatArray{
Data: []float32{
1.0, 1.1, 1.2, 1.3, // vector for ID 1 (first occurrence)
2.0, 2.1, 2.2, 2.3, // vector for ID 2
1.4, 1.5, 1.6, 1.7, // vector for ID 1 (second occurrence - keep this)
},
},
Data: &schemapb.ScalarField_IntData{
IntData: &schemapb.IntArray{Data: []int32{100, 200, 300}},
},
},
},
},
}
deduplicatedFields, newNumRows, err := DeduplicateFieldData(primaryFieldSchema, fieldsData, schema)
// Call CheckDuplicatePkExist directly to verify no duplicate error
primaryFieldSchema, err := typeutil.GetPrimaryFieldSchema(schema)
assert.NoError(t, err)
assert.Equal(t, uint32(2), newNumRows)
assert.Equal(t, 2, len(deduplicatedFields))
// Check deduplicated primary keys
pkField := deduplicatedFields[0]
pkData := pkField.GetScalars().GetLongData().GetData()
assert.Equal(t, 2, len(pkData))
assert.Equal(t, []int64{2, 1}, pkData)
// Check corresponding vector (should keep vectors for ID 2 and ID 1's last occurrence)
vectorField := deduplicatedFields[1]
vectorData := vectorField.GetVectors().GetFloatVector().GetData()
assert.Equal(t, 8, len(vectorData)) // 2 vectors * 4 dimensions
expectedVector := []float32{
2.0, 2.1, 2.2, 2.3, // vector for ID 2
1.4, 1.5, 1.6, 1.7, // vector for ID 1 (last occurrence)
}
assert.Equal(t, expectedVector, vectorData)
}
func TestUpsertTask_Deduplicate_EmptyData(t *testing.T) {
// Test with empty data
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
IsPrimaryKey: true,
}
collSchema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
primaryFieldSchema,
},
}
schema := newSchemaInfo(collSchema)
fieldsData := []*schemapb.FieldData{}
deduplicatedFields, newNumRows, err := DeduplicateFieldData(primaryFieldSchema, fieldsData, schema)
hasDuplicate, err := CheckDuplicatePkExist(primaryFieldSchema, fieldsData)
assert.NoError(t, err)
assert.Equal(t, uint32(0), newNumRows)
assert.Equal(t, 0, len(deduplicatedFields))
}
func TestUpsertTask_Deduplicate_MissingPrimaryKey(t *testing.T) {
// Test with missing primary key field
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
IsPrimaryKey: true,
}
collSchema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
primaryFieldSchema,
{
Name: "other_field",
FieldID: 101,
DataType: schemapb.DataType_Float,
},
},
}
schema := newSchemaInfo(collSchema)
fieldsData := []*schemapb.FieldData{
{
FieldName: "other_field",
Type: schemapb.DataType_Float,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_FloatData{
FloatData: &schemapb.FloatArray{
Data: []float32{1.1, 2.2},
},
},
},
},
},
}
_, _, err := DeduplicateFieldData(primaryFieldSchema, fieldsData, schema)
assert.Error(t, err)
// validateFieldDataColumns will fail first due to column count mismatch
// or the function will fail when trying to find primary key
assert.True(t, err != nil)
assert.False(t, hasDuplicate, "should not have duplicate primary keys")
}

View File

@ -1049,31 +1049,25 @@ func parsePrimaryFieldData2IDs(fieldData *schemapb.FieldData) (*schemapb.IDs, er
return primaryData, nil
}
// findLastOccurrenceIndices finds indices of last occurrences for each unique ID
func findLastOccurrenceIndices[T comparable](ids []T) []int {
lastOccurrence := make(map[T]int, len(ids))
for idx, id := range ids {
lastOccurrence[id] = idx
// hasDuplicates checks if there are any duplicate values in the slice.
// Returns true immediately when the first duplicate is found (early exit).
func hasDuplicates[T comparable](ids []T) bool {
seen := make(map[T]struct{}, len(ids))
for _, id := range ids {
if _, exists := seen[id]; exists {
return true
}
seen[id] = struct{}{}
}
return false
}
keepIndices := make([]int, 0, len(lastOccurrence))
for idx, id := range ids {
if lastOccurrence[id] == idx {
keepIndices = append(keepIndices, idx)
}
}
return keepIndices
}
// DeduplicateFieldData removes duplicate primary keys from field data,
// keeping the last occurrence of each ID
func DeduplicateFieldData(primaryFieldSchema *schemapb.FieldSchema, fieldsData []*schemapb.FieldData, schema *schemaInfo) ([]*schemapb.FieldData, uint32, error) {
// CheckDuplicatePkExist checks if there are duplicate primary keys in the field data.
// Returns (true, nil) if duplicates exist, (false, nil) if no duplicates.
// Returns (false, error) if there's an error during checking.
func CheckDuplicatePkExist(primaryFieldSchema *schemapb.FieldSchema, fieldsData []*schemapb.FieldData) (bool, error) {
if len(fieldsData) == 0 {
return fieldsData, 0, nil
}
if err := fillFieldPropertiesOnly(fieldsData, schema); err != nil {
return nil, 0, err
return false, nil
}
// find primary field data
@ -1086,64 +1080,26 @@ func DeduplicateFieldData(primaryFieldSchema *schemapb.FieldSchema, fieldsData [
}
if primaryFieldData == nil {
return nil, 0, merr.WrapErrParameterInvalidMsg(fmt.Sprintf("must assign pk when upsert, primary field: %v", primaryFieldSchema.GetName()))
return false, merr.WrapErrParameterInvalidMsg(fmt.Sprintf("must assign pk when upsert, primary field: %v", primaryFieldSchema.GetName()))
}
// get row count
var numRows int
// check for duplicates based on primary key type
switch primaryFieldData.Field.(type) {
case *schemapb.FieldData_Scalars:
scalarField := primaryFieldData.GetScalars()
switch scalarField.Data.(type) {
case *schemapb.ScalarField_LongData:
numRows = len(scalarField.GetLongData().GetData())
case *schemapb.ScalarField_StringData:
numRows = len(scalarField.GetStringData().GetData())
default:
return nil, 0, merr.WrapErrParameterInvalidMsg("unsupported primary key type")
}
default:
return nil, 0, merr.WrapErrParameterInvalidMsg("primary field must be scalar type")
}
if numRows == 0 {
return fieldsData, 0, nil
}
// build map to track last occurrence of each primary key
var keepIndices []int
switch primaryFieldData.Field.(type) {
case *schemapb.FieldData_Scalars:
scalarField := primaryFieldData.GetScalars()
switch scalarField.Data.(type) {
case *schemapb.ScalarField_LongData:
// for Int64 primary keys
intIDs := scalarField.GetLongData().GetData()
keepIndices = findLastOccurrenceIndices(intIDs)
return hasDuplicates(intIDs), nil
case *schemapb.ScalarField_StringData:
// for VarChar primary keys
strIDs := scalarField.GetStringData().GetData()
keepIndices = findLastOccurrenceIndices(strIDs)
return hasDuplicates(strIDs), nil
default:
return false, merr.WrapErrParameterInvalidMsg("unsupported primary key type")
}
default:
return false, merr.WrapErrParameterInvalidMsg("primary field must be scalar type")
}
// if no duplicates found, return original data
if len(keepIndices) == numRows {
return fieldsData, uint32(numRows), nil
}
log.Info("duplicate primary keys detected in upsert request, deduplicating",
zap.Int("original_rows", numRows),
zap.Int("deduplicated_rows", len(keepIndices)))
// use typeutil.AppendFieldData to rebuild field data with deduplicated rows
result := typeutil.PrepareResultFieldData(fieldsData, int64(len(keepIndices)))
for _, idx := range keepIndices {
typeutil.AppendFieldData(result, fieldsData, int64(idx))
}
return result, uint32(len(keepIndices)), nil
}
// autoGenPrimaryFieldData generate primary data when autoID == true
@ -1214,12 +1170,12 @@ func validateFieldDataColumns(columns []*schemapb.FieldData, schema *schemaInfo)
expectColumnNum := 0
// Count expected columns
for _, field := range schema.GetFields() {
for _, field := range schema.CollectionSchema.GetFields() {
if !typeutil.IsBM25FunctionOutputField(field, schema.CollectionSchema) {
expectColumnNum++
}
}
for _, structField := range schema.GetStructArrayFields() {
for _, structField := range schema.CollectionSchema.GetStructArrayFields() {
expectColumnNum += len(structField.GetFields())
}

View File

@ -4866,3 +4866,147 @@ func TestGetStorageCost(t *testing.T) {
assert.True(t, ok)
})
}
func TestCheckDuplicatePkExist_Int64PK(t *testing.T) {
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
}
t.Run("with duplicates", func(t *testing.T) {
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
Type: schemapb.DataType_Int64,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_LongData{
LongData: &schemapb.LongArray{
Data: []int64{1, 2, 3, 1, 4, 2}, // duplicates: 1, 2
},
},
},
},
},
}
hasDup, err := CheckDuplicatePkExist(primaryFieldSchema, fieldsData)
assert.NoError(t, err)
assert.True(t, hasDup)
})
t.Run("without duplicates", func(t *testing.T) {
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
Type: schemapb.DataType_Int64,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_LongData{
LongData: &schemapb.LongArray{
Data: []int64{1, 2, 3, 4, 5},
},
},
},
},
},
}
hasDup, err := CheckDuplicatePkExist(primaryFieldSchema, fieldsData)
assert.NoError(t, err)
assert.False(t, hasDup)
})
}
func TestCheckDuplicatePkExist_VarCharPK(t *testing.T) {
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_VarChar,
}
t.Run("with duplicates", func(t *testing.T) {
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
Type: schemapb.DataType_VarChar,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_StringData{
StringData: &schemapb.StringArray{
Data: []string{"a", "b", "c", "a", "d"}, // duplicate: "a"
},
},
},
},
},
}
hasDup, err := CheckDuplicatePkExist(primaryFieldSchema, fieldsData)
assert.NoError(t, err)
assert.True(t, hasDup)
})
t.Run("without duplicates", func(t *testing.T) {
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
Type: schemapb.DataType_VarChar,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_StringData{
StringData: &schemapb.StringArray{
Data: []string{"a", "b", "c", "d", "e"},
},
},
},
},
},
}
hasDup, err := CheckDuplicatePkExist(primaryFieldSchema, fieldsData)
assert.NoError(t, err)
assert.False(t, hasDup)
})
}
func TestCheckDuplicatePkExist_EmptyData(t *testing.T) {
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
}
hasDup, err := CheckDuplicatePkExist(primaryFieldSchema, []*schemapb.FieldData{})
assert.NoError(t, err)
assert.False(t, hasDup)
}
func TestCheckDuplicatePkExist_MissingPrimaryKey(t *testing.T) {
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
}
fieldsData := []*schemapb.FieldData{
{
FieldName: "other_field",
Type: schemapb.DataType_Int64,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_LongData{
LongData: &schemapb.LongArray{
Data: []int64{1, 2, 3},
},
},
},
},
},
}
hasDup, err := CheckDuplicatePkExist(primaryFieldSchema, fieldsData)
assert.Error(t, err)
assert.False(t, hasDup)
}

View File

@ -436,7 +436,7 @@ func TestUpsertAutoID(t *testing.T) {
// upsert without pks -> error
vecColumn = hp.GenColumnData(nb, entity.FieldTypeFloatVector, *hp.TNewDataOption())
_, err = mc.Upsert(ctx, client.NewColumnBasedInsertOption(schema.CollectionName).WithColumns(vecColumn))
common.CheckErr(t, err, false, "has no corresponding fieldData pass in: invalid parameter")
common.CheckErr(t, err, false, "must assign pk when upsert")
}
// test upsert autoId collection

View File

@ -1221,14 +1221,13 @@ class TestMilvusClientPartialUpdateValid(TestMilvusClientV2Base):
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_partial_update_same_pk_same_field(self):
"""
target: Test PU will success and query will success
target: Test partial update on an existing pk with the same field will success
method:
1. Create a collection
2. Insert rows
3. Upsert the rows with same pk and same field
4. Query the rows
5. Upsert the rows with same pk and different field
expected: Step 2 -> 4 should success 5 should fail
3. Upsert a single row with existing pk and same field (partial update)
4. Query the row to verify the update
expected: All steps should success, and the field value should be updated
"""
# step 1: create collection
client = self._client()
@ -1248,16 +1247,19 @@ class TestMilvusClientPartialUpdateValid(TestMilvusClientV2Base):
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
self.upsert(client, collection_name, rows, partial_update=True)
# step 3: Upsert the rows with same pk and same field
new_rows = [{default_primary_key_field_name: 0,
default_int32_field_name: i} for i in range(default_nb)]
self.upsert(client, collection_name, new_rows, partial_update=True)
# step 3: Upsert a single row with existing pk=0 and update the same field
updated_value = 99999
new_row = {default_primary_key_field_name: 0,
default_int32_field_name: updated_value}
self.upsert(client, collection_name, [new_row], partial_update=True)
# step 4: Query the rows
# step 4: Query the row to verify the update
expected_row = {default_primary_key_field_name: 0,
default_int32_field_name: updated_value}
result = self.query(client, collection_name, filter=f"{default_primary_key_field_name} == 0",
check_task=CheckTasks.check_query_results,
output_fields=[default_int32_field_name],
check_items={exp_res: [new_rows[-1]],
check_items={exp_res: [expected_row],
"pk_name": default_primary_key_field_name})[0]
assert len(result) == 1

View File

@ -371,6 +371,72 @@ class TestMilvusClientUpsertInvalid(TestMilvusClientV2Base):
check_task=CheckTasks.err_res,
check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_duplicate_pk_int64(self):
"""
target: test upsert with duplicate primary keys (Int64)
method:
1. create collection with Int64 primary key
2. upsert data with duplicate primary keys in the same batch
expected: raise error - duplicate primary keys are not allowed
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. upsert with duplicate PKs: 1, 2, 1 (duplicate)
rng = np.random.default_rng(seed=19530)
rows = [
{default_primary_key_field_name: 1, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 1.0, default_string_field_name: "first"},
{default_primary_key_field_name: 2, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 2.0, default_string_field_name: "second"},
{default_primary_key_field_name: 1, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 1.1, default_string_field_name: "duplicate"},
]
error = {ct.err_code: 1100,
ct.err_msg: "duplicate primary keys are not allowed in the same batch"}
self.upsert(client, collection_name, rows,
check_task=CheckTasks.err_res, check_items=error)
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_duplicate_pk_varchar(self):
"""
target: test upsert with duplicate primary keys (VarChar)
method:
1. create collection with VarChar primary key
2. upsert data with duplicate primary keys in the same batch
expected: raise error - duplicate primary keys are not allowed
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
dim = default_dim
# 1. create collection with VarChar primary key
schema = self.create_schema(client, enable_dynamic_field=False)[0]
schema.add_field(default_primary_key_field_name, DataType.VARCHAR, max_length=64, is_primary=True,
auto_id=False)
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
schema.add_field(default_float_field_name, DataType.FLOAT)
index_params = self.prepare_index_params(client)[0]
index_params.add_index(default_vector_field_name, metric_type="COSINE")
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
# 2. upsert with duplicate PKs: "a", "b", "a" (duplicate)
rng = np.random.default_rng(seed=19530)
rows = [
{default_primary_key_field_name: "a", default_vector_field_name: list(rng.random((1, dim))[0]),
default_float_field_name: 1.0},
{default_primary_key_field_name: "b", default_vector_field_name: list(rng.random((1, dim))[0]),
default_float_field_name: 2.0},
{default_primary_key_field_name: "a", default_vector_field_name: list(rng.random((1, dim))[0]),
default_float_field_name: 1.1},
]
error = {ct.err_code: 1100,
ct.err_msg: "duplicate primary keys are not allowed in the same batch"}
self.upsert(client, collection_name, rows,
check_task=CheckTasks.err_res, check_items=error)
self.drop_collection(client, collection_name)
class TestMilvusClientUpsertValid(TestMilvusClientV2Base):
""" Test case of search interface """
@ -551,342 +617,3 @@ class TestMilvusClientUpsertValid(TestMilvusClientV2Base):
self.drop_partition(client, collection_name, partition_name)
if self.has_collection(client, collection_name)[0]:
self.drop_collection(client, collection_name)
class TestMilvusClientUpsertDedup(TestMilvusClientV2Base):
"""Test case for upsert deduplication functionality"""
@pytest.fixture(scope="function", params=["COSINE", "L2"])
def metric_type(self, request):
yield request.param
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_dedup_int64_pk(self):
"""
target: test upsert with duplicate int64 primary keys in same batch
method:
1. create collection with int64 primary key
2. upsert data with duplicate primary keys [1, 2, 3, 2, 1]
3. query to verify only last occurrence is kept
expected: only 3 unique records exist, with data from last occurrence
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. upsert data with duplicate PKs: [1, 2, 3, 2, 1]
# Expected: keep last occurrence -> [3, 2, 1] at indices [2, 3, 4]
rng = np.random.default_rng(seed=19530)
rows = [
{default_primary_key_field_name: 1, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 1.0, default_string_field_name: "str_1_first"},
{default_primary_key_field_name: 2, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 2.0, default_string_field_name: "str_2_first"},
{default_primary_key_field_name: 3, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 3.0, default_string_field_name: "str_3"},
{default_primary_key_field_name: 2, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 2.1, default_string_field_name: "str_2_last"},
{default_primary_key_field_name: 1, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 1.1, default_string_field_name: "str_1_last"},
]
results = self.upsert(client, collection_name, rows)[0]
# After deduplication, should only have 3 records
assert results['upsert_count'] == 3
# 3. query to verify deduplication - should have only 3 unique records
query_results = self.query(client, collection_name, filter="id >= 0")[0]
assert len(query_results) == 3
# Verify that last occurrence data is kept
id_to_data = {item['id']: item for item in query_results}
assert 1 in id_to_data
assert 2 in id_to_data
assert 3 in id_to_data
# Check that data from last occurrence is preserved
assert id_to_data[1]['float'] == 1.1
assert id_to_data[1]['varchar'] == "str_1_last"
assert id_to_data[2]['float'] == 2.1
assert id_to_data[2]['varchar'] == "str_2_last"
assert id_to_data[3]['float'] == 3.0
assert id_to_data[3]['varchar'] == "str_3"
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_dedup_varchar_pk(self):
"""
target: test upsert with duplicate varchar primary keys in same batch
method:
1. create collection with varchar primary key
2. upsert data with duplicate primary keys ["a", "b", "c", "b", "a"]
3. query to verify only last occurrence is kept
expected: only 3 unique records exist, with data from last occurrence
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection with varchar primary key
schema = self.create_schema(client, enable_dynamic_field=True)[0]
schema.add_field("id", DataType.VARCHAR, max_length=64, is_primary=True, auto_id=False)
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
schema.add_field("age", DataType.INT64)
index_params = self.prepare_index_params(client)[0]
index_params.add_index(default_vector_field_name, metric_type="COSINE")
self.create_collection(client, collection_name, default_dim, schema=schema,
index_params=index_params, consistency_level="Strong")
# 2. upsert data with duplicate PKs: ["a", "b", "c", "b", "a"]
# Expected: keep last occurrence -> ["c", "b", "a"] at indices [2, 3, 4]
rng = np.random.default_rng(seed=19530)
rows = [
{"id": "a", default_vector_field_name: list(rng.random((1, default_dim))[0]),
"age": 10},
{"id": "b", default_vector_field_name: list(rng.random((1, default_dim))[0]),
"age": 20},
{"id": "c", default_vector_field_name: list(rng.random((1, default_dim))[0]),
"age": 30},
{"id": "b", default_vector_field_name: list(rng.random((1, default_dim))[0]),
"age": 21},
{"id": "a", default_vector_field_name: list(rng.random((1, default_dim))[0]),
"age": 11},
]
results = self.upsert(client, collection_name, rows)[0]
# After deduplication, should only have 3 records
assert results['upsert_count'] == 3
# 3. query to verify deduplication
query_results = self.query(client, collection_name, filter='id in ["a", "b", "c"]')[0]
assert len(query_results) == 3
# Verify that last occurrence data is kept
id_to_data = {item['id']: item for item in query_results}
assert "a" in id_to_data
assert "b" in id_to_data
assert "c" in id_to_data
# Check that data from last occurrence is preserved
assert id_to_data["a"]["age"] == 11
assert id_to_data["b"]["age"] == 21
assert id_to_data["c"]["age"] == 30
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_dedup_all_duplicates(self):
"""
target: test upsert when all records have same primary key
method:
1. create collection
2. upsert 5 records with same primary key
3. query to verify only 1 record exists
expected: only 1 record exists with data from last occurrence
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. upsert data where all have same PK (id=1)
rng = np.random.default_rng(seed=19530)
rows = [
{default_primary_key_field_name: 1, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: i * 1.0, default_string_field_name: f"version_{i}"}
for i in range(5)
]
results = self.upsert(client, collection_name, rows)[0]
# After deduplication, should only have 1 record
assert results['upsert_count'] == 1
# 3. query to verify only 1 record exists
query_results = self.query(client, collection_name, filter="id == 1")[0]
assert len(query_results) == 1
# Verify it's the last occurrence (i=4)
assert query_results[0]['float'] == 4.0
assert query_results[0]['varchar'] == "version_4"
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_dedup_no_duplicates(self):
"""
target: test upsert with no duplicate primary keys
method:
1. create collection
2. upsert data with unique primary keys
3. query to verify all records exist
expected: all records exist as-is
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. upsert data with unique PKs
rng = np.random.default_rng(seed=19530)
nb = 10
rows = [
{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: i * 1.0, default_string_field_name: str(i)}
for i in range(nb)
]
results = self.upsert(client, collection_name, rows)[0]
# No deduplication should occur
assert results['upsert_count'] == nb
# 3. query to verify all records exist
query_results = self.query(client, collection_name, filter=f"id >= 0")[0]
assert len(query_results) == nb
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_upsert_dedup_large_batch(self):
"""
target: test upsert deduplication with large batch
method:
1. create collection
2. upsert large batch with 50% duplicate primary keys
3. query to verify correct number of records
expected: only unique records exist
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. upsert large batch where each ID appears twice
rng = np.random.default_rng(seed=19530)
nb = 500
unique_ids = nb // 2 # 250 unique IDs
rows = []
for i in range(nb):
pk = i % unique_ids # This creates duplicates: 0,1,2...249,0,1,2...249
rows.append({
default_primary_key_field_name: pk,
default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: float(i), # Different value for each row
default_string_field_name: f"batch_{i}"
})
results = self.upsert(client, collection_name, rows)[0]
# After deduplication, should only have unique_ids records
assert results['upsert_count'] == unique_ids
# 3. query to verify correct number of records
query_results = self.query(client, collection_name, filter=f"id >= 0", limit=1000)[0]
assert len(query_results) == unique_ids
# Verify that last occurrence is kept (should have higher float values)
for item in query_results:
pk = item['id']
# Last occurrence of pk is at index (pk + unique_ids)
expected_float = float(pk + unique_ids)
assert item['float'] == expected_float
assert item['varchar'] == f"batch_{pk + unique_ids}"
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_dedup_with_partition(self):
"""
target: test upsert deduplication works correctly with partitions
method:
1. create collection with partition
2. upsert data with duplicates to specific partition
3. query to verify deduplication in partition
expected: deduplication works within partition
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
partition_name = cf.gen_unique_str("partition")
# 1. create collection and partition
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
self.create_partition(client, collection_name, partition_name)
# 2. upsert data with duplicates to partition
rng = np.random.default_rng(seed=19530)
rows = [
{default_primary_key_field_name: 1, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 1.0, default_string_field_name: "first"},
{default_primary_key_field_name: 2, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 2.0, default_string_field_name: "unique"},
{default_primary_key_field_name: 1, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 1.1, default_string_field_name: "last"},
]
results = self.upsert(client, collection_name, rows, partition_name=partition_name)[0]
assert results['upsert_count'] == 2
# 3. query partition to verify deduplication
query_results = self.query(client, collection_name, filter="id >= 0",
partition_names=[partition_name])[0]
assert len(query_results) == 2
# Verify correct data
id_to_data = {item['id']: item for item in query_results}
assert id_to_data[1]['float'] == 1.1
assert id_to_data[1]['varchar'] == "last"
assert id_to_data[2]['float'] == 2.0
assert id_to_data[2]['varchar'] == "unique"
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_dedup_with_vectors(self):
"""
target: test upsert deduplication preserves correct vector data
method:
1. create collection
2. upsert data with duplicate PKs but different vectors
3. search to verify correct vector is preserved
expected: vector from last occurrence is preserved
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. upsert data with duplicate PK=1 but different vectors
# Create distinctly different vectors for easy verification
first_vector = [1.0] * default_dim # All 1.0
last_vector = [2.0] * default_dim # All 2.0
rows = [
{default_primary_key_field_name: 1, default_vector_field_name: first_vector,
default_float_field_name: 1.0, default_string_field_name: "first"},
{default_primary_key_field_name: 2, default_vector_field_name: [0.5] * default_dim,
default_float_field_name: 2.0, default_string_field_name: "unique"},
{default_primary_key_field_name: 1, default_vector_field_name: last_vector,
default_float_field_name: 1.1, default_string_field_name: "last"},
]
results = self.upsert(client, collection_name, rows)[0]
assert results['upsert_count'] == 2
# 3. query to get vector data
query_results = self.query(client, collection_name, filter="id == 1",
output_fields=["id", "vector", "float", "varchar"])[0]
assert len(query_results) == 1
# Verify it's the last occurrence with last_vector
result = query_results[0]
assert result['float'] == 1.1
assert result['varchar'] == "last"
# Vector should be last_vector (all 2.0)
assert all(abs(v - 2.0) < 0.001 for v in result['vector'])
self.drop_collection(client, collection_name)