mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-06 17:18:35 +08:00
enhance: support readAt interface for remote input stream (#43997)
#42032 Also, fix the cacheoptfield method to work in storagev2. Also, change the sparse related interface for knowhere version bump #43974 . Also, includes https://github.com/milvus-io/milvus/pull/44046 for metric lost. --------- Signed-off-by: chasingegg <chao.gao@zilliz.com> Signed-off-by: marcelo.chen <marcelo.chen@zilliz.com> Signed-off-by: Congqi Xia <congqi.xia@zilliz.com> Co-authored-by: marcelo.chen <marcelo.chen@zilliz.com> Co-authored-by: Congqi Xia <congqi.xia@zilliz.com>
This commit is contained in:
parent
8934c18792
commit
e97a618630
@ -500,7 +500,7 @@ class SparseFloatVectorChunk : public Chunk {
|
||||
reinterpret_cast<uint64_t*>(data + null_bitmap_bytes_num);
|
||||
for (int i = 0; i < row_nums; i++) {
|
||||
vec_[i] = {(offsets_ptr[i + 1] - offsets_ptr[i]) /
|
||||
knowhere::sparse::SparseRow<float>::element_size(),
|
||||
knowhere::sparse::SparseRow<sparseValueType>::element_size(),
|
||||
reinterpret_cast<uint8_t*>(data + offsets_ptr[i]),
|
||||
false};
|
||||
dim_ = std::max(dim_, vec_[i].dim());
|
||||
@ -519,7 +519,7 @@ class SparseFloatVectorChunk : public Chunk {
|
||||
}
|
||||
|
||||
// only for test
|
||||
std::vector<knowhere::sparse::SparseRow<float>>&
|
||||
std::vector<knowhere::sparse::SparseRow<sparseValueType>>&
|
||||
Vec() {
|
||||
return vec_;
|
||||
}
|
||||
@ -531,6 +531,6 @@ class SparseFloatVectorChunk : public Chunk {
|
||||
|
||||
private:
|
||||
int64_t dim_ = 0;
|
||||
std::vector<knowhere::sparse::SparseRow<float>> vec_;
|
||||
std::vector<knowhere::sparse::SparseRow<sparseValueType>> vec_;
|
||||
};
|
||||
} // namespace milvus
|
||||
@ -447,7 +447,7 @@ create_chunk_writer(const FieldMeta& field_meta, Args&&... args) {
|
||||
field_meta.get_element_type(),
|
||||
std::forward<Args>(args)...,
|
||||
nullable);
|
||||
case milvus::DataType::VECTOR_SPARSE_FLOAT:
|
||||
case milvus::DataType::VECTOR_SPARSE_U32_F32:
|
||||
return std::make_shared<SparseFloatVectorChunkWriter>(
|
||||
std::forward<Args>(args)..., nullable);
|
||||
case milvus::DataType::VECTOR_ARRAY:
|
||||
|
||||
@ -284,11 +284,11 @@ FieldDataImpl<Type, is_type_entire_row>::FillFieldData(
|
||||
array);
|
||||
return FillFieldData(array_info.first, array_info.second);
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
AssertInfo(array->type()->id() == arrow::Type::type::BINARY,
|
||||
"inconsistent data type");
|
||||
auto arr = std::dynamic_pointer_cast<arrow::BinaryArray>(array);
|
||||
std::vector<knowhere::sparse::SparseRow<float>> values;
|
||||
std::vector<knowhere::sparse::SparseRow<sparseValueType>> values;
|
||||
for (size_t index = 0; index < element_count; ++index) {
|
||||
auto view = arr->GetString(index);
|
||||
values.push_back(
|
||||
@ -460,7 +460,7 @@ template class FieldDataImpl<int8_t, false>;
|
||||
template class FieldDataImpl<float, false>;
|
||||
template class FieldDataImpl<float16, false>;
|
||||
template class FieldDataImpl<bfloat16, false>;
|
||||
template class FieldDataImpl<knowhere::sparse::SparseRow<float>, true>;
|
||||
template class FieldDataImpl<knowhere::sparse::SparseRow<sparseValueType>, true>;
|
||||
template class FieldDataImpl<VectorArray, true>;
|
||||
|
||||
FieldDataPtr
|
||||
|
||||
@ -723,14 +723,14 @@ class FieldDataJsonImpl : public FieldDataImpl<Json, true> {
|
||||
};
|
||||
|
||||
class FieldDataSparseVectorImpl
|
||||
: public FieldDataImpl<knowhere::sparse::SparseRow<float>, true> {
|
||||
: public FieldDataImpl<knowhere::sparse::SparseRow<sparseValueType>, true> {
|
||||
public:
|
||||
explicit FieldDataSparseVectorImpl(DataType data_type,
|
||||
int64_t total_num_rows = 0)
|
||||
: FieldDataImpl<knowhere::sparse::SparseRow<float>, true>(
|
||||
: FieldDataImpl<knowhere::sparse::SparseRow<sparseValueType>, true>(
|
||||
/*dim=*/1, data_type, false, total_num_rows),
|
||||
vec_dim_(0) {
|
||||
AssertInfo(data_type == DataType::VECTOR_SPARSE_FLOAT,
|
||||
AssertInfo(data_type == DataType::VECTOR_SPARSE_U32_F32,
|
||||
"invalid data type for sparse vector");
|
||||
}
|
||||
|
||||
@ -753,7 +753,7 @@ class FieldDataSparseVectorImpl
|
||||
}
|
||||
|
||||
// source is a pointer to element_count of
|
||||
// knowhere::sparse::SparseRow<float>
|
||||
// knowhere::sparse::SparseRow<sparseValueType>
|
||||
void
|
||||
FillFieldData(const void* source, ssize_t element_count) override {
|
||||
if (element_count == 0) {
|
||||
@ -765,7 +765,7 @@ class FieldDataSparseVectorImpl
|
||||
resize_field_data(length_ + element_count);
|
||||
}
|
||||
auto ptr =
|
||||
static_cast<const knowhere::sparse::SparseRow<float>*>(source);
|
||||
static_cast<const knowhere::sparse::SparseRow<sparseValueType>*>(source);
|
||||
for (int64_t i = 0; i < element_count; ++i) {
|
||||
auto& row = ptr[i];
|
||||
vec_dim_ = std::max(vec_dim_, row.dim());
|
||||
@ -774,7 +774,7 @@ class FieldDataSparseVectorImpl
|
||||
length_ += element_count;
|
||||
}
|
||||
|
||||
// each binary in array is a knowhere::sparse::SparseRow<float>
|
||||
// each binary in array is a knowhere::sparse::SparseRow<sparseValueType>
|
||||
void
|
||||
FillFieldData(const std::shared_ptr<arrow::BinaryArray>& array) override {
|
||||
auto n = array->length();
|
||||
|
||||
@ -37,7 +37,7 @@ constexpr bool IsScalar =
|
||||
|
||||
template <typename T>
|
||||
constexpr bool IsSparse = std::is_same_v<T, SparseFloatVector> ||
|
||||
std::is_same_v<T, knowhere::sparse::SparseRow<float>>;
|
||||
std::is_same_v<T, knowhere::sparse::SparseRow<sparseValueType>>;
|
||||
|
||||
template <typename T>
|
||||
constexpr bool IsVariableType =
|
||||
@ -52,7 +52,7 @@ template <typename T>
|
||||
constexpr bool IsVariableTypeSupportInChunk =
|
||||
std::is_same_v<T, std::string> || std::is_same_v<T, Array> ||
|
||||
std::is_same_v<T, Json> ||
|
||||
std::is_same_v<T, knowhere::sparse::SparseRow<float>>;
|
||||
std::is_same_v<T, knowhere::sparse::SparseRow<sparseValueType>>;
|
||||
|
||||
template <typename T>
|
||||
using ChunkViewType = std::conditional_t<
|
||||
|
||||
@ -63,6 +63,7 @@ using float16 = knowhere::fp16;
|
||||
using bfloat16 = knowhere::bf16;
|
||||
using bin1 = knowhere::bin1;
|
||||
using int8 = knowhere::int8;
|
||||
using sparse_u32_f32 = knowhere::sparse_u32_f32;
|
||||
|
||||
// See also: https://github.com/milvus-io/milvus-proto/blob/master/proto/schema.proto
|
||||
enum class DataType {
|
||||
@ -91,7 +92,7 @@ enum class DataType {
|
||||
VECTOR_FLOAT = 101,
|
||||
VECTOR_FLOAT16 = 102,
|
||||
VECTOR_BFLOAT16 = 103,
|
||||
VECTOR_SPARSE_FLOAT = 104,
|
||||
VECTOR_SPARSE_U32_F32 = 104,
|
||||
VECTOR_INT8 = 105,
|
||||
VECTOR_ARRAY = 106,
|
||||
};
|
||||
@ -139,7 +140,7 @@ GetDataTypeSize(DataType data_type, int dim = 1) {
|
||||
return sizeof(bfloat16) * dim;
|
||||
case DataType::VECTOR_INT8:
|
||||
return sizeof(int8) * dim;
|
||||
// Not supporting variable length types(such as VECTOR_SPARSE_FLOAT and
|
||||
// Not supporting variable length types(such as VECTOR_SPARSE_U32_F32 and
|
||||
// VARCHAR) here intentionally. We can't easily estimate the size of
|
||||
// them. Caller of this method must handle this case themselves and must
|
||||
// not pass variable length types to this method.
|
||||
@ -184,7 +185,7 @@ GetArrowDataType(DataType data_type, int dim = 1) {
|
||||
case DataType::VECTOR_FLOAT16:
|
||||
case DataType::VECTOR_BFLOAT16:
|
||||
return arrow::fixed_size_binary(dim * 2);
|
||||
case DataType::VECTOR_SPARSE_FLOAT:
|
||||
case DataType::VECTOR_SPARSE_U32_F32:
|
||||
return arrow::binary();
|
||||
case DataType::VECTOR_INT8:
|
||||
return arrow::fixed_size_binary(dim);
|
||||
@ -244,8 +245,8 @@ GetDataTypeName(DataType data_type) {
|
||||
return "vector_float16";
|
||||
case DataType::VECTOR_BFLOAT16:
|
||||
return "vector_bfloat16";
|
||||
case DataType::VECTOR_SPARSE_FLOAT:
|
||||
return "vector_sparse_float";
|
||||
case DataType::VECTOR_SPARSE_U32_F32:
|
||||
return "VECTOR_SPARSE_U32_F32";
|
||||
case DataType::VECTOR_INT8:
|
||||
return "vector_int8";
|
||||
case DataType::VECTOR_ARRAY:
|
||||
@ -386,7 +387,7 @@ IsDenseFloatVectorDataType(DataType data_type) {
|
||||
|
||||
inline bool
|
||||
IsSparseFloatVectorDataType(DataType data_type) {
|
||||
return data_type == DataType::VECTOR_SPARSE_FLOAT;
|
||||
return data_type == DataType::VECTOR_SPARSE_U32_F32;
|
||||
}
|
||||
|
||||
inline bool
|
||||
@ -749,8 +750,8 @@ struct fmt::formatter<milvus::DataType> : formatter<string_view> {
|
||||
case milvus::DataType::VECTOR_BFLOAT16:
|
||||
name = "VECTOR_BFLOAT16";
|
||||
break;
|
||||
case milvus::DataType::VECTOR_SPARSE_FLOAT:
|
||||
name = "VECTOR_SPARSE_FLOAT";
|
||||
case milvus::DataType::VECTOR_SPARSE_U32_F32:
|
||||
name = "VECTOR_SPARSE_U32_F32";
|
||||
break;
|
||||
case milvus::DataType::VECTOR_INT8:
|
||||
name = "VECTOR_INT8";
|
||||
|
||||
@ -43,6 +43,7 @@ namespace milvus {
|
||||
(data_array->vectors().type##_vector().data())
|
||||
|
||||
using CheckDataValid = std::function<bool(size_t)>;
|
||||
using sparseValueType = typename knowhere::sparse_u32_f32::ValueType;
|
||||
|
||||
inline DatasetPtr
|
||||
GenDataset(const int64_t nb, const int64_t dim, const void* xb) {
|
||||
@ -245,17 +246,17 @@ EscapeBraces(const std::string& input) {
|
||||
return result;
|
||||
}
|
||||
|
||||
inline knowhere::sparse::SparseRow<float>
|
||||
inline knowhere::sparse::SparseRow<sparseValueType>
|
||||
CopyAndWrapSparseRow(const void* data,
|
||||
size_t size,
|
||||
const bool validate = false) {
|
||||
size_t num_elements =
|
||||
size / knowhere::sparse::SparseRow<float>::element_size();
|
||||
knowhere::sparse::SparseRow<float> row(num_elements);
|
||||
size / knowhere::sparse::SparseRow<sparseValueType>::element_size();
|
||||
knowhere::sparse::SparseRow<sparseValueType> row(num_elements);
|
||||
std::memcpy(row.data(), data, size);
|
||||
if (validate) {
|
||||
AssertInfo(
|
||||
size % knowhere::sparse::SparseRow<float>::element_size() == 0,
|
||||
size % knowhere::sparse::SparseRow<sparseValueType>::element_size() == 0,
|
||||
"Invalid size for sparse row data");
|
||||
for (size_t i = 0; i < num_elements; ++i) {
|
||||
auto element = row[i];
|
||||
@ -276,17 +277,17 @@ CopyAndWrapSparseRow(const void* data,
|
||||
|
||||
// Iterable is a list of bytes, each is a byte array representation of a single
|
||||
// sparse float row. This helper function converts such byte arrays into a list
|
||||
// of knowhere::sparse::SparseRow<float>. The resulting list is a deep copy of
|
||||
// of knowhere::sparse::SparseRow<sparseValueType>. The resulting list is a deep copy of
|
||||
// the source data.
|
||||
//
|
||||
// Here in segcore we validate the sparse row data only for search requests,
|
||||
// as the insert/upsert data are already validated in go code.
|
||||
template <typename Iterable>
|
||||
std::unique_ptr<knowhere::sparse::SparseRow<float>[]>
|
||||
std::unique_ptr<knowhere::sparse::SparseRow<sparseValueType>[]>
|
||||
SparseBytesToRows(const Iterable& rows, const bool validate = false) {
|
||||
AssertInfo(rows.size() > 0, "at least 1 sparse row should be provided");
|
||||
auto res =
|
||||
std::make_unique<knowhere::sparse::SparseRow<float>[]>(rows.size());
|
||||
std::make_unique<knowhere::sparse::SparseRow<sparseValueType>[]>(rows.size());
|
||||
for (size_t i = 0; i < rows.size(); ++i) {
|
||||
res[i] = std::move(
|
||||
CopyAndWrapSparseRow(rows[i].data(), rows[i].size(), validate));
|
||||
@ -294,11 +295,11 @@ SparseBytesToRows(const Iterable& rows, const bool validate = false) {
|
||||
return res;
|
||||
}
|
||||
|
||||
// SparseRowsToProto converts a list of knowhere::sparse::SparseRow<float> to
|
||||
// SparseRowsToProto converts a list of knowhere::sparse::SparseRow<sparseValueType> to
|
||||
// a milvus::proto::schema::SparseFloatArray. The resulting proto is a deep copy
|
||||
// of the source data. source(i) returns the i-th row to be copied.
|
||||
inline void SparseRowsToProto(
|
||||
const std::function<const knowhere::sparse::SparseRow<float>*(size_t)>&
|
||||
const std::function<const knowhere::sparse::SparseRow<sparseValueType>*(size_t)>&
|
||||
source,
|
||||
int64_t rows,
|
||||
milvus::proto::schema::SparseFloatArray* proto) {
|
||||
|
||||
@ -122,7 +122,7 @@ class SparseFloatVector : public VectorTrait {
|
||||
public:
|
||||
using embedded_type = float;
|
||||
static constexpr int32_t dim_factor = 1;
|
||||
static constexpr auto data_type = DataType::VECTOR_SPARSE_FLOAT;
|
||||
static constexpr auto data_type = DataType::VECTOR_SPARSE_U32_F32;
|
||||
static constexpr auto c_data_type = CDataType::SparseFloatVector;
|
||||
static constexpr auto schema_data_type =
|
||||
proto::schema::DataType::SparseFloatVector;
|
||||
|
||||
@ -93,6 +93,11 @@ KnowhereInitSearchThreadPool(const uint32_t num_threads) {
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
KnowhereInitFetchThreadPool(const uint32_t num_threads) {
|
||||
knowhere::KnowhereConfig::SetFetchThreadPoolSize(num_threads);
|
||||
}
|
||||
|
||||
void
|
||||
KnowhereInitGPUMemoryPool(const uint32_t init_size, const uint32_t max_size) {
|
||||
if (init_size == 0 && max_size == 0) {
|
||||
|
||||
@ -35,6 +35,9 @@ KnowhereInitBuildThreadPool(const uint32_t);
|
||||
void
|
||||
KnowhereInitSearchThreadPool(const uint32_t);
|
||||
|
||||
void
|
||||
KnowhereInitFetchThreadPool(const uint32_t);
|
||||
|
||||
int32_t
|
||||
GetMinimalIndexVersion();
|
||||
|
||||
|
||||
@ -184,12 +184,12 @@ IndexFactory::VecIndexLoadResource(
|
||||
knowhere::IndexStaticFaced<knowhere::bf16>::HasRawData(
|
||||
index_type, index_version, config);
|
||||
break;
|
||||
case milvus::DataType::VECTOR_SPARSE_FLOAT:
|
||||
case milvus::DataType::VECTOR_SPARSE_U32_F32:
|
||||
resource = knowhere::IndexStaticFaced<
|
||||
knowhere::fp32>::EstimateLoadResource(index_type,
|
||||
index_version,
|
||||
index_size_gb,
|
||||
config);
|
||||
knowhere::sparse_u32_f32>::EstimateLoadResource(index_type,
|
||||
index_version,
|
||||
index_size_gb,
|
||||
config);
|
||||
has_raw_data =
|
||||
knowhere::IndexStaticFaced<knowhere::fp32>::HasRawData(
|
||||
index_type, index_version, config);
|
||||
@ -516,8 +516,8 @@ IndexFactory::CreateVectorIndex(
|
||||
return std::make_unique<VectorDiskAnnIndex<bin1>>(
|
||||
index_type, metric_type, version, file_manager_context);
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
return std::make_unique<VectorDiskAnnIndex<float>>(
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
return std::make_unique<VectorDiskAnnIndex<sparse_u32_f32>>(
|
||||
index_type, metric_type, version, file_manager_context);
|
||||
}
|
||||
case DataType::VECTOR_ARRAY: {
|
||||
@ -537,8 +537,7 @@ IndexFactory::CreateVectorIndex(
|
||||
}
|
||||
} else { // create mem index
|
||||
switch (data_type) {
|
||||
case DataType::VECTOR_FLOAT:
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_FLOAT: {
|
||||
return std::make_unique<VectorMemIndex<float>>(
|
||||
DataType::NONE,
|
||||
index_type,
|
||||
@ -547,6 +546,15 @@ IndexFactory::CreateVectorIndex(
|
||||
use_knowhere_build_pool,
|
||||
file_manager_context);
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
return std::make_unique<VectorMemIndex<sparse_u32_f32>>(
|
||||
DataType::NONE,
|
||||
index_type,
|
||||
metric_type,
|
||||
version,
|
||||
use_knowhere_build_pool,
|
||||
file_manager_context);
|
||||
}
|
||||
case DataType::VECTOR_BINARY: {
|
||||
return std::make_unique<VectorMemIndex<bin1>>(
|
||||
DataType::NONE,
|
||||
@ -596,11 +604,19 @@ IndexFactory::CreateVectorIndex(
|
||||
version,
|
||||
use_knowhere_build_pool,
|
||||
file_manager_context);
|
||||
case DataType::VECTOR_SPARSE_U32_F32:
|
||||
return std::make_unique<VectorMemIndex<sparse_u32_f32>>(
|
||||
element_type,
|
||||
index_type,
|
||||
metric_type,
|
||||
version,
|
||||
use_knowhere_build_pool,
|
||||
file_manager_context);
|
||||
default:
|
||||
ThrowInfo(NotImplemented,
|
||||
fmt::format("not implemented data type to "
|
||||
"build mem index: {}",
|
||||
data_type));
|
||||
element_type));
|
||||
}
|
||||
}
|
||||
default:
|
||||
|
||||
@ -168,7 +168,7 @@ VectorDiskAnnIndex<T>::Build(const Config& config) {
|
||||
index_.IsAdditionalScalarSupported(
|
||||
is_partition_key_isolation.value_or(false))) {
|
||||
build_config[VEC_OPT_FIELDS_PATH] =
|
||||
file_manager_->CacheOptFieldToDisk(opt_fields.value());
|
||||
file_manager_->CacheOptFieldToDisk(config);
|
||||
// `partition_key_isolation` is already in the config, so it falls through
|
||||
// into the index Build call directly
|
||||
}
|
||||
@ -415,5 +415,6 @@ template class VectorDiskAnnIndex<float>;
|
||||
template class VectorDiskAnnIndex<float16>;
|
||||
template class VectorDiskAnnIndex<bfloat16>;
|
||||
template class VectorDiskAnnIndex<bin1>;
|
||||
template class VectorDiskAnnIndex<sparse_u32_f32>;
|
||||
|
||||
} // namespace milvus::index
|
||||
|
||||
@ -80,7 +80,7 @@ class VectorDiskAnnIndex : public VectorIndex {
|
||||
std::vector<uint8_t>
|
||||
GetVector(const DatasetPtr dataset) const override;
|
||||
|
||||
std::unique_ptr<const knowhere::sparse::SparseRow<float>[]>
|
||||
std::unique_ptr<const knowhere::sparse::SparseRow<sparseValueType>[]>
|
||||
GetSparseVector(const DatasetPtr dataset) const override {
|
||||
ThrowInfo(ErrorCode::Unsupported,
|
||||
"get sparse vector not supported for disk index");
|
||||
|
||||
@ -76,7 +76,7 @@ class VectorIndex : public IndexBase {
|
||||
virtual std::vector<uint8_t>
|
||||
GetVector(const DatasetPtr dataset) const = 0;
|
||||
|
||||
virtual std::unique_ptr<const knowhere::sparse::SparseRow<float>[]>
|
||||
virtual std::unique_ptr<const knowhere::sparse::SparseRow<sparseValueType>[]>
|
||||
GetSparseVector(const DatasetPtr dataset) const = 0;
|
||||
|
||||
IndexType
|
||||
|
||||
@ -426,10 +426,10 @@ VectorMemIndex<T>::Build(const Config& config) {
|
||||
field_data)
|
||||
->Dim());
|
||||
}
|
||||
std::vector<knowhere::sparse::SparseRow<float>> vec(total_rows);
|
||||
std::vector<knowhere::sparse::SparseRow<sparseValueType>> vec(total_rows);
|
||||
int64_t offset = 0;
|
||||
for (auto field_data : field_datas) {
|
||||
auto ptr = static_cast<const knowhere::sparse::SparseRow<float>*>(
|
||||
auto ptr = static_cast<const knowhere::sparse::SparseRow<sparseValueType>*>(
|
||||
field_data->Data());
|
||||
AssertInfo(ptr, "failed to cast field data to sparse rows");
|
||||
for (size_t i = 0; i < field_data->Length(); ++i) {
|
||||
@ -570,7 +570,7 @@ VectorMemIndex<T>::GetVector(const DatasetPtr dataset) const {
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::unique_ptr<const knowhere::sparse::SparseRow<float>[]>
|
||||
std::unique_ptr<const knowhere::sparse::SparseRow<sparseValueType>[]>
|
||||
VectorMemIndex<T>::GetSparseVector(const DatasetPtr dataset) const {
|
||||
auto res = index_.GetVectorByIds(dataset);
|
||||
if (!res.has_value()) {
|
||||
@ -579,8 +579,8 @@ VectorMemIndex<T>::GetSparseVector(const DatasetPtr dataset) const {
|
||||
}
|
||||
// release and transfer ownership to the result unique ptr.
|
||||
res.value()->SetIsOwner(false);
|
||||
return std::unique_ptr<const knowhere::sparse::SparseRow<float>[]>(
|
||||
static_cast<const knowhere::sparse::SparseRow<float>*>(
|
||||
return std::unique_ptr<const knowhere::sparse::SparseRow<sparseValueType>[]>(
|
||||
static_cast<const knowhere::sparse::SparseRow<sparseValueType>*>(
|
||||
res.value()->GetTensor()));
|
||||
}
|
||||
|
||||
@ -751,5 +751,6 @@ template class VectorMemIndex<bin1>;
|
||||
template class VectorMemIndex<float16>;
|
||||
template class VectorMemIndex<bfloat16>;
|
||||
template class VectorMemIndex<int8>;
|
||||
template class VectorMemIndex<sparse_u32_f32>;
|
||||
|
||||
} // namespace milvus::index
|
||||
|
||||
@ -87,7 +87,7 @@ class VectorMemIndex : public VectorIndex {
|
||||
std::vector<uint8_t>
|
||||
GetVector(const DatasetPtr dataset) const override;
|
||||
|
||||
std::unique_ptr<const knowhere::sparse::SparseRow<float>[]>
|
||||
std::unique_ptr<const knowhere::sparse::SparseRow<sparseValueType>[]>
|
||||
GetSparseVector(const DatasetPtr dataset) const override;
|
||||
|
||||
IndexStatsPtr
|
||||
|
||||
@ -68,7 +68,7 @@ class IndexFactory {
|
||||
case DataType::VECTOR_FLOAT16:
|
||||
case DataType::VECTOR_BFLOAT16:
|
||||
case DataType::VECTOR_BINARY:
|
||||
case DataType::VECTOR_SPARSE_FLOAT:
|
||||
case DataType::VECTOR_SPARSE_U32_F32:
|
||||
case DataType::VECTOR_INT8:
|
||||
case DataType::VECTOR_ARRAY:
|
||||
return std::make_unique<VecIndexCreator>(type, config, context);
|
||||
|
||||
@ -134,8 +134,8 @@ VariableLengthChunk<std::string>::set(
|
||||
// Template specialization for sparse vector
|
||||
template <>
|
||||
inline void
|
||||
VariableLengthChunk<knowhere::sparse::SparseRow<float>>::set(
|
||||
const knowhere::sparse::SparseRow<float>* src,
|
||||
VariableLengthChunk<knowhere::sparse::SparseRow<sparseValueType>>::set(
|
||||
const knowhere::sparse::SparseRow<sparseValueType>* src,
|
||||
uint32_t begin,
|
||||
uint32_t length,
|
||||
const std::optional<CheckDataValid>& check_data_valid) {
|
||||
@ -158,7 +158,7 @@ VariableLengthChunk<knowhere::sparse::SparseRow<float>>::set(
|
||||
uint8_t* data_ptr = buf + offset;
|
||||
std::memcpy(data_ptr, (uint8_t*)src[i].data(), data_size);
|
||||
data_[i + begin] =
|
||||
knowhere::sparse::SparseRow<float>(src[i].size(), data_ptr, false);
|
||||
knowhere::sparse::SparseRow<sparseValueType>(src[i].size(), data_ptr, false);
|
||||
offset += data_size;
|
||||
}
|
||||
}
|
||||
|
||||
@ -16,9 +16,9 @@
|
||||
|
||||
char*
|
||||
GetCoreMetrics() {
|
||||
auto str = milvus::monitor::prometheusClient->GetMetrics();
|
||||
auto str = milvus::monitor::getPrometheusClient().GetMetrics();
|
||||
auto len = str.length();
|
||||
char* res = (char*)malloc(len + 1);
|
||||
char* res = static_cast<char*>(malloc(len + 1));
|
||||
memcpy(res, str.data(), len);
|
||||
res[len] = '\0';
|
||||
return res;
|
||||
|
||||
@ -27,10 +27,11 @@ const prometheus::Histogram::BucketBoundaries cgoCallDurationbuckets = {
|
||||
// One histogram per function name (label)
|
||||
static inline prometheus::Histogram&
|
||||
GetHistogram(std::string&& func) {
|
||||
static auto& hist_family = prometheus::BuildHistogram()
|
||||
.Name("milvus_cgocall_duration_seconds")
|
||||
.Help("Duration of cgo-exposed functions")
|
||||
.Register(prometheusClient->GetRegistry());
|
||||
static auto& hist_family =
|
||||
prometheus::BuildHistogram()
|
||||
.Name("milvus_cgocall_duration_seconds")
|
||||
.Help("Duration of cgo-exposed functions")
|
||||
.Register(getPrometheusClient().GetRegistry());
|
||||
|
||||
// default buckets: [0.005, 0.01, ..., 1.0]
|
||||
return hist_family.Add({{"func", func}}, cgoCallDurationbuckets);
|
||||
|
||||
@ -23,6 +23,7 @@
|
||||
#include "common/Json.h"
|
||||
#include "common/Consts.h"
|
||||
#include "common/Schema.h"
|
||||
#include "common/Utils.h"
|
||||
|
||||
namespace milvus::query {
|
||||
|
||||
@ -80,7 +81,7 @@ struct Placeholder {
|
||||
// only one of blob_ and sparse_matrix_ should be set. blob_ is used for
|
||||
// dense vector search and sparse_matrix_ is for sparse vector search.
|
||||
aligned_vector<char> blob_;
|
||||
std::unique_ptr<knowhere::sparse::SparseRow<float>[]> sparse_matrix_;
|
||||
std::unique_ptr<knowhere::sparse::SparseRow<sparseValueType>[]> sparse_matrix_;
|
||||
// offsets for embedding list
|
||||
aligned_vector<size_t> lims_;
|
||||
|
||||
|
||||
@ -106,7 +106,7 @@ PrepareBFDataSet(const dataset::SearchDataset& query_ds,
|
||||
query_dataset->SetRows(query_ds.query_lims[query_ds.num_queries]);
|
||||
}
|
||||
|
||||
if (data_type == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
if (data_type == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
base_dataset->SetIsSparse(true);
|
||||
query_dataset->SetIsSparse(true);
|
||||
}
|
||||
@ -168,9 +168,9 @@ BruteForceSearch(const dataset::SearchDataset& query_ds,
|
||||
} else if (data_type == DataType::VECTOR_BINARY) {
|
||||
res = knowhere::BruteForce::RangeSearch<bin1>(
|
||||
base_dataset, query_dataset, search_cfg, bitset);
|
||||
} else if (data_type == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
} else if (data_type == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
res = knowhere::BruteForce::RangeSearch<
|
||||
knowhere::sparse::SparseRow<float>>(
|
||||
knowhere::sparse::SparseRow<sparseValueType>>(
|
||||
base_dataset, query_dataset, search_cfg, bitset);
|
||||
} else if (data_type == DataType::VECTOR_INT8) {
|
||||
res = knowhere::BruteForce::RangeSearch<int8>(
|
||||
@ -229,7 +229,7 @@ BruteForceSearch(const dataset::SearchDataset& query_ds,
|
||||
sub_result.mutable_distances().data(),
|
||||
search_cfg,
|
||||
bitset);
|
||||
} else if (data_type == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
} else if (data_type == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
stat = knowhere::BruteForce::SearchSparseWithBuf(
|
||||
base_dataset,
|
||||
query_dataset,
|
||||
@ -279,9 +279,9 @@ DispatchBruteForceIteratorByDataType(const knowhere::DataSetPtr& base_dataset,
|
||||
case DataType::VECTOR_BFLOAT16:
|
||||
return knowhere::BruteForce::AnnIterator<bfloat16>(
|
||||
base_dataset, query_dataset, config, bitset);
|
||||
case DataType::VECTOR_SPARSE_FLOAT:
|
||||
case DataType::VECTOR_SPARSE_U32_F32:
|
||||
return knowhere::BruteForce::AnnIterator<
|
||||
knowhere::sparse::SparseRow<float>>(
|
||||
knowhere::sparse::SparseRow<sparseValueType>>(
|
||||
base_dataset, query_dataset, config, bitset);
|
||||
case DataType::VECTOR_INT8:
|
||||
return knowhere::BruteForce::AnnIterator<int8>(
|
||||
|
||||
@ -38,13 +38,13 @@ FloatSegmentIndexSearch(const segcore::SegmentGrowingImpl& segment,
|
||||
|
||||
auto vecfield_id = info.field_id_;
|
||||
auto& field = schema[vecfield_id];
|
||||
auto is_sparse = field.get_data_type() == DataType::VECTOR_SPARSE_FLOAT;
|
||||
auto is_sparse = field.get_data_type() == DataType::VECTOR_SPARSE_U32_F32;
|
||||
// TODO(SPARSE): see todo in PlanImpl.h::PlaceHolder.
|
||||
auto dim = is_sparse ? 0 : field.get_dim();
|
||||
|
||||
AssertInfo(IsVectorDataType(field.get_data_type()),
|
||||
"[FloatSearch]Field data type isn't VECTOR_FLOAT, "
|
||||
"VECTOR_FLOAT16, VECTOR_BFLOAT16 or VECTOR_SPARSE_FLOAT");
|
||||
"VECTOR_FLOAT16, VECTOR_BFLOAT16 or VECTOR_SPARSE_U32_F32");
|
||||
dataset::SearchDataset search_dataset{info.metric_type_,
|
||||
num_queries,
|
||||
info.topk_,
|
||||
@ -119,7 +119,7 @@ SearchOnGrowing(const segcore::SegmentGrowingImpl& segment,
|
||||
}
|
||||
SubSearchResult final_qr(num_queries, topk, metric_type, round_decimal);
|
||||
// TODO(SPARSE): see todo in PlanImpl.h::PlaceHolder.
|
||||
auto dim = field.get_data_type() == DataType::VECTOR_SPARSE_FLOAT
|
||||
auto dim = field.get_data_type() == DataType::VECTOR_SPARSE_U32_F32
|
||||
? 0
|
||||
: field.get_dim();
|
||||
dataset::SearchDataset search_dataset{metric_type,
|
||||
|
||||
@ -40,7 +40,7 @@ SearchOnSealedIndex(const Schema& schema,
|
||||
|
||||
auto field_id = search_info.field_id_;
|
||||
auto& field = schema[field_id];
|
||||
auto is_sparse = field.get_data_type() == DataType::VECTOR_SPARSE_FLOAT;
|
||||
auto is_sparse = field.get_data_type() == DataType::VECTOR_SPARSE_U32_F32;
|
||||
// TODO(SPARSE): see todo in PlanImpl.h::PlaceHolder.
|
||||
auto dim = is_sparse ? 0 : field.get_dim();
|
||||
|
||||
@ -115,7 +115,7 @@ SearchOnSealedColumn(const Schema& schema,
|
||||
auto data_type = field.get_data_type();
|
||||
auto element_type = field.get_element_type();
|
||||
// TODO(SPARSE): see todo in PlanImpl.h::PlaceHolder.
|
||||
auto dim = data_type == DataType::VECTOR_SPARSE_FLOAT ? 0 : field.get_dim();
|
||||
auto dim = data_type == DataType::VECTOR_SPARSE_U32_F32 ? 0 : field.get_dim();
|
||||
|
||||
query::dataset::SearchDataset query_dataset{search_info.metric_type_,
|
||||
num_queries,
|
||||
|
||||
@ -813,7 +813,7 @@ ChunkedSegmentSealedImpl::get_vector(FieldId field_id,
|
||||
if (has_raw_data) {
|
||||
// If index has raw data, get vector from memory.
|
||||
auto ids_ds = GenIdsDataset(count, ids);
|
||||
if (field_meta.get_data_type() == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
if (field_meta.get_data_type() == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
auto res = vec_index->GetSparseVector(ids_ds);
|
||||
return segcore::CreateVectorDataArrayFrom(
|
||||
res.get(), count, field_meta);
|
||||
@ -1752,7 +1752,7 @@ ChunkedSegmentSealedImpl::get_raw_data(FieldId field_id,
|
||||
ret->mutable_vectors()->mutable_int8_vector()->data());
|
||||
break;
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
auto dst = ret->mutable_vectors()->mutable_sparse_float_vector();
|
||||
int64_t max_dim = 0;
|
||||
column->BulkValueAt(
|
||||
@ -1761,7 +1761,7 @@ ChunkedSegmentSealedImpl::get_raw_data(FieldId field_id,
|
||||
auto row =
|
||||
offset != INVALID_SEG_OFFSET
|
||||
? static_cast<
|
||||
const knowhere::sparse::SparseRow<float>*>(
|
||||
const knowhere::sparse::SparseRow<sparseValueType>*>(
|
||||
static_cast<const void*>(value))
|
||||
: nullptr;
|
||||
if (row == nullptr) {
|
||||
@ -2108,7 +2108,7 @@ ChunkedSegmentSealedImpl::generate_interim_index(const FieldId field_id,
|
||||
auto& index_params = field_index_meta.GetIndexParams();
|
||||
|
||||
bool is_sparse =
|
||||
field_meta.get_data_type() == DataType::VECTOR_SPARSE_FLOAT;
|
||||
field_meta.get_data_type() == DataType::VECTOR_SPARSE_U32_F32;
|
||||
|
||||
bool enable_growing_mmap = storage::MmapManager::GetInstance()
|
||||
.GetMmapConfig()
|
||||
|
||||
@ -37,7 +37,7 @@ VectorBase::set_data_raw(ssize_t element_offset,
|
||||
return set_data_raw(
|
||||
element_offset, VEC_FIELD_DATA(data, bfloat16), element_count);
|
||||
} else if (field_meta.get_data_type() ==
|
||||
DataType::VECTOR_SPARSE_FLOAT) {
|
||||
DataType::VECTOR_SPARSE_U32_F32) {
|
||||
return set_data_raw(
|
||||
element_offset,
|
||||
SparseBytesToRows(
|
||||
|
||||
@ -504,13 +504,13 @@ class ConcurrentVector<VectorArray>
|
||||
|
||||
template <>
|
||||
class ConcurrentVector<SparseFloatVector>
|
||||
: public ConcurrentVectorImpl<knowhere::sparse::SparseRow<float>, true> {
|
||||
: public ConcurrentVectorImpl<knowhere::sparse::SparseRow<sparseValueType>, true> {
|
||||
public:
|
||||
explicit ConcurrentVector(
|
||||
int64_t size_per_chunk,
|
||||
storage::MmapChunkDescriptorPtr mmap_descriptor = nullptr,
|
||||
ThreadSafeValidDataPtr valid_data_ptr = nullptr)
|
||||
: ConcurrentVectorImpl<knowhere::sparse::SparseRow<float>,
|
||||
: ConcurrentVectorImpl<knowhere::sparse::SparseRow<sparseValueType>,
|
||||
true>::ConcurrentVectorImpl(1,
|
||||
size_per_chunk,
|
||||
std::move(
|
||||
@ -524,11 +524,11 @@ class ConcurrentVector<SparseFloatVector>
|
||||
const void* source,
|
||||
ssize_t element_count) override {
|
||||
auto* src =
|
||||
static_cast<const knowhere::sparse::SparseRow<float>*>(source);
|
||||
static_cast<const knowhere::sparse::SparseRow<sparseValueType>*>(source);
|
||||
for (int i = 0; i < element_count; ++i) {
|
||||
dim_ = std::max(dim_, src[i].dim());
|
||||
}
|
||||
ConcurrentVectorImpl<knowhere::sparse::SparseRow<float>,
|
||||
ConcurrentVectorImpl<knowhere::sparse::SparseRow<sparseValueType>,
|
||||
true>::set_data_raw(element_offset,
|
||||
source,
|
||||
element_count);
|
||||
|
||||
@ -46,7 +46,7 @@ void
|
||||
VectorFieldIndexing::recreate_index(DataType data_type,
|
||||
const VectorBase* field_raw_data) {
|
||||
if (IsSparseFloatVectorDataType(data_type)) {
|
||||
index_ = std::make_unique<index::VectorMemIndex<float>>(
|
||||
index_ = std::make_unique<index::VectorMemIndex<sparse_u32_f32>>(
|
||||
DataType::NONE,
|
||||
config_->GetIndexType(),
|
||||
config_->GetMetricType(),
|
||||
@ -150,7 +150,7 @@ VectorFieldIndexing::AppendSegmentIndexSparse(int64_t reserved_offset,
|
||||
auto dim = source->Dim();
|
||||
|
||||
while (total_rows > 0) {
|
||||
auto mat = static_cast<const knowhere::sparse::SparseRow<float>*>(
|
||||
auto mat = static_cast<const knowhere::sparse::SparseRow<sparseValueType>*>(
|
||||
source->get_chunk_data(chunk_id));
|
||||
auto rows = std::min(source->get_size_per_chunk(), total_rows);
|
||||
auto dataset = knowhere::GenDataSet(rows, dim, mat);
|
||||
@ -336,7 +336,7 @@ CreateIndex(const FieldMeta& field_meta,
|
||||
field_meta.get_data_type() == DataType::VECTOR_FLOAT16 ||
|
||||
field_meta.get_data_type() == DataType::VECTOR_BFLOAT16 ||
|
||||
field_meta.get_data_type() == DataType::VECTOR_INT8 ||
|
||||
field_meta.get_data_type() == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
field_meta.get_data_type() == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
return std::make_unique<VectorFieldIndexing>(field_meta,
|
||||
field_index_meta,
|
||||
segment_max_row_count,
|
||||
|
||||
@ -345,7 +345,7 @@ class IndexingRecord {
|
||||
size,
|
||||
field_raw_data,
|
||||
stream_data->vectors().bfloat16_vector().data());
|
||||
} else if (type == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
} else if (type == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
auto data = SparseBytesToRows(
|
||||
stream_data->vectors().sparse_float_vector().contents());
|
||||
indexing->AppendSegmentIndexSparse(
|
||||
@ -378,7 +378,7 @@ class IndexingRecord {
|
||||
auto vec_base = record.get_data_base(fieldId);
|
||||
indexing->AppendSegmentIndexDense(
|
||||
reserved_offset, size, vec_base, data->Data());
|
||||
} else if (type == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
} else if (type == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
auto vec_base = record.get_data_base(fieldId);
|
||||
indexing->AppendSegmentIndexSparse(
|
||||
reserved_offset,
|
||||
@ -406,7 +406,7 @@ class IndexingRecord {
|
||||
if (data_type == DataType::VECTOR_FLOAT ||
|
||||
data_type == DataType::VECTOR_FLOAT16 ||
|
||||
data_type == DataType::VECTOR_BFLOAT16 ||
|
||||
data_type == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
data_type == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
indexing->GetDataFromIndex(
|
||||
seg_offsets, count, element_size, output_raw);
|
||||
}
|
||||
|
||||
@ -699,7 +699,7 @@ struct InsertRecord<false> : public InsertRecord<true> {
|
||||
dense_vec_mmap_descriptor);
|
||||
return;
|
||||
} else if (field_meta.get_data_type() ==
|
||||
DataType::VECTOR_SPARSE_FLOAT) {
|
||||
DataType::VECTOR_SPARSE_U32_F32) {
|
||||
this->append_data<SparseFloatVector>(
|
||||
field_id, size_per_chunk, vec_mmap_descriptor);
|
||||
return;
|
||||
|
||||
@ -782,7 +782,7 @@ SegmentGrowingImpl::bulk_subscript(FieldId field_id,
|
||||
count,
|
||||
result->mutable_vectors()->mutable_bfloat16_vector()->data());
|
||||
} else if (field_meta.get_data_type() ==
|
||||
DataType::VECTOR_SPARSE_FLOAT) {
|
||||
DataType::VECTOR_SPARSE_U32_F32) {
|
||||
bulk_subscript_sparse_float_vector_impl(
|
||||
field_id,
|
||||
(const ConcurrentVector<SparseFloatVector>*)vec_ptr,
|
||||
|
||||
@ -210,7 +210,7 @@ GetRawDataSizeOfDataArray(const DataArray* data,
|
||||
|
||||
break;
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
// TODO(SPARSE, size)
|
||||
result += data->vectors().sparse_float_vector().ByteSizeLong();
|
||||
break;
|
||||
@ -342,7 +342,7 @@ CreateEmptyVectorDataArray(int64_t count, const FieldMeta& field_meta) {
|
||||
|
||||
auto vector_array = data_array->mutable_vectors();
|
||||
auto dim = 0;
|
||||
if (data_type != DataType::VECTOR_SPARSE_FLOAT) {
|
||||
if (data_type != DataType::VECTOR_SPARSE_U32_F32) {
|
||||
dim = field_meta.get_dim();
|
||||
vector_array->set_dim(dim);
|
||||
}
|
||||
@ -373,7 +373,7 @@ CreateEmptyVectorDataArray(int64_t count, const FieldMeta& field_meta) {
|
||||
obj->resize(length * sizeof(bfloat16));
|
||||
break;
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
// does nothing here
|
||||
break;
|
||||
}
|
||||
@ -544,11 +544,11 @@ CreateVectorDataArrayFrom(const void* data_raw,
|
||||
obj->assign(data, length * sizeof(bfloat16));
|
||||
break;
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
SparseRowsToProto(
|
||||
[&](size_t i) {
|
||||
return reinterpret_cast<
|
||||
const knowhere::sparse::SparseRow<float>*>(
|
||||
const knowhere::sparse::SparseRow<sparseValueType>*>(
|
||||
data_raw) +
|
||||
i;
|
||||
},
|
||||
@ -655,7 +655,7 @@ MergeDataArray(std::vector<MergeBase>& merge_bases,
|
||||
auto obj = vector_array->mutable_binary_vector();
|
||||
obj->assign(data + src_offset * num_bytes, num_bytes);
|
||||
} else if (field_meta.get_data_type() ==
|
||||
DataType::VECTOR_SPARSE_FLOAT) {
|
||||
DataType::VECTOR_SPARSE_U32_F32) {
|
||||
auto src = src_field_data->vectors().sparse_float_vector();
|
||||
auto dst = vector_array->mutable_sparse_float_vector();
|
||||
if (src.dim() > dst->dim()) {
|
||||
|
||||
@ -123,6 +123,11 @@ SegcoreSetKnowhereSearchThreadPoolNum(const uint32_t num_threads) {
|
||||
milvus::config::KnowhereInitSearchThreadPool(num_threads);
|
||||
}
|
||||
|
||||
extern "C" void
|
||||
SegcoreSetKnowhereFetchThreadPoolNum(const uint32_t num_threads) {
|
||||
milvus::config::KnowhereInitFetchThreadPool(num_threads);
|
||||
}
|
||||
|
||||
extern "C" void
|
||||
SegcoreSetKnowhereGpuMemoryPoolSize(const uint32_t init_size,
|
||||
const uint32_t max_size) {
|
||||
|
||||
@ -71,6 +71,9 @@ SegcoreSetKnowhereBuildThreadPoolNum(const uint32_t num_threads);
|
||||
void
|
||||
SegcoreSetKnowhereSearchThreadPoolNum(const uint32_t num_threads);
|
||||
|
||||
void
|
||||
SegcoreSetKnowhereFetchThreadPoolNum(const uint32_t num_threads);
|
||||
|
||||
void
|
||||
SegcoreSetKnowhereGpuMemoryPoolSize(const uint32_t init_size,
|
||||
const uint32_t max_size);
|
||||
|
||||
@ -105,7 +105,8 @@ InterimSealedIndexTranslator::get_cells(
|
||||
false);
|
||||
}
|
||||
} else {
|
||||
vec_index = std::make_unique<index::VectorMemIndex<float>>(
|
||||
// sparse vector case
|
||||
vec_index = std::make_unique<index::VectorMemIndex<sparse_u32_f32>>(
|
||||
DataType::NONE,
|
||||
index_type_,
|
||||
metric_type_,
|
||||
|
||||
@ -75,9 +75,9 @@ ValidateIndexParams(const char* index_type,
|
||||
knowhere::Version::GetCurrentVersion().VersionNumber(),
|
||||
json,
|
||||
error_msg);
|
||||
} else if (dataType == milvus::DataType::VECTOR_SPARSE_FLOAT) {
|
||||
} else if (dataType == milvus::DataType::VECTOR_SPARSE_U32_F32) {
|
||||
status =
|
||||
knowhere::IndexStaticFaced<knowhere::fp32>::ConfigCheck(
|
||||
knowhere::IndexStaticFaced<knowhere::sparse_u32_f32>::ConfigCheck(
|
||||
index_type,
|
||||
knowhere::Version::GetCurrentVersion().VersionNumber(),
|
||||
json,
|
||||
|
||||
@ -476,7 +476,7 @@ DiskFileManagerImpl::cache_raw_data_to_disk_common(
|
||||
GetFieldDataMeta().segment_id,
|
||||
GetFieldDataMeta().field_id) +
|
||||
"raw_data";
|
||||
if (dt == milvus::DataType::VECTOR_SPARSE_FLOAT) {
|
||||
if (dt == milvus::DataType::VECTOR_SPARSE_U32_F32) {
|
||||
local_data_path += ".sparse_u32_f32";
|
||||
}
|
||||
local_chunk_manager->CreateFile(local_data_path);
|
||||
@ -484,13 +484,13 @@ DiskFileManagerImpl::cache_raw_data_to_disk_common(
|
||||
init_file_info(data_type);
|
||||
file_created = true;
|
||||
}
|
||||
if (data_type == milvus::DataType::VECTOR_SPARSE_FLOAT) {
|
||||
if (data_type == milvus::DataType::VECTOR_SPARSE_U32_F32) {
|
||||
dim =
|
||||
(uint32_t)(std::dynamic_pointer_cast<FieldData<SparseFloatVector>>(
|
||||
field_data)
|
||||
->Dim());
|
||||
auto sparse_rows =
|
||||
static_cast<const knowhere::sparse::SparseRow<float>*>(
|
||||
static_cast<const knowhere::sparse::SparseRow<sparseValueType>*>(
|
||||
field_data->Data());
|
||||
for (size_t i = 0; i < field_data->Length(); ++i) {
|
||||
auto row = sparse_rows[i];
|
||||
@ -620,9 +620,11 @@ WriteOptFieldIvfDataImpl(
|
||||
|
||||
// Do not write to disk if there is only one value
|
||||
if (mp.size() <= 1) {
|
||||
LOG_INFO("There are only one category, skip caching to local disk");
|
||||
return false;
|
||||
}
|
||||
|
||||
LOG_INFO("Get opt fields with {} categories", mp.size());
|
||||
local_chunk_manager->Write(local_data_path,
|
||||
write_offset,
|
||||
const_cast<int64_t*>(&field_id),
|
||||
@ -712,7 +714,31 @@ WriteOptFieldsIvfMeta(
|
||||
}
|
||||
|
||||
std::string
|
||||
DiskFileManagerImpl::CacheOptFieldToDisk(OptFieldT& fields_map) {
|
||||
DiskFileManagerImpl::CacheOptFieldToDisk(const Config& config) {
|
||||
auto storage_version =
|
||||
index::GetValueFromConfig<int64_t>(config, STORAGE_VERSION_KEY)
|
||||
.value_or(0);
|
||||
auto opt_fields =
|
||||
index::GetValueFromConfig<OptFieldT>(config, VEC_OPT_FIELDS);
|
||||
if (!opt_fields.has_value()) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::string>> remote_files_storage_v2;
|
||||
if (storage_version == STORAGE_V2) {
|
||||
auto segment_insert_files =
|
||||
index::GetValueFromConfig<std::vector<std::vector<std::string>>>(
|
||||
config, SEGMENT_INSERT_FILES_KEY);
|
||||
AssertInfo(segment_insert_files.has_value(),
|
||||
"segment insert files is empty when build index while "
|
||||
"caching opt fields");
|
||||
remote_files_storage_v2 = segment_insert_files.value();
|
||||
for (auto& remote_files : remote_files_storage_v2) {
|
||||
SortByPath(remote_files);
|
||||
}
|
||||
}
|
||||
|
||||
auto fields_map = opt_fields.value();
|
||||
const uint32_t num_of_fields = fields_map.size();
|
||||
if (0 == num_of_fields) {
|
||||
return "";
|
||||
@ -737,15 +763,22 @@ DiskFileManagerImpl::CacheOptFieldToDisk(OptFieldT& fields_map) {
|
||||
std::unordered_set<int64_t> actual_field_ids;
|
||||
for (auto& [field_id, tup] : fields_map) {
|
||||
const auto& field_type = std::get<1>(tup);
|
||||
auto& field_paths = std::get<2>(tup);
|
||||
if (0 == field_paths.size()) {
|
||||
LOG_WARN("optional field {} has no data", field_id);
|
||||
return "";
|
||||
}
|
||||
|
||||
SortByPath(field_paths);
|
||||
std::vector<FieldDataPtr> field_datas =
|
||||
FetchFieldData(rcm_.get(), field_paths);
|
||||
std::vector<FieldDataPtr> field_datas;
|
||||
// fetch scalar data from storage v2
|
||||
if (storage_version == STORAGE_V2) {
|
||||
field_datas = GetFieldDatasFromStorageV2(
|
||||
remote_files_storage_v2, field_id, field_type, 1, fs_);
|
||||
} else { // original way
|
||||
auto& field_paths = std::get<2>(tup);
|
||||
if (0 == field_paths.size()) {
|
||||
LOG_WARN("optional field {} has no data", field_id);
|
||||
return "";
|
||||
}
|
||||
|
||||
SortByPath(field_paths);
|
||||
field_datas = FetchFieldData(rcm_.get(), field_paths);
|
||||
}
|
||||
|
||||
if (WriteOptFieldIvfData(field_type,
|
||||
field_id,
|
||||
@ -934,6 +967,8 @@ template std::string
|
||||
DiskFileManagerImpl::CacheRawDataToDisk<bfloat16>(const Config& config);
|
||||
template std::string
|
||||
DiskFileManagerImpl::CacheRawDataToDisk<bin1>(const Config& config);
|
||||
template std::string
|
||||
DiskFileManagerImpl::CacheRawDataToDisk<sparse_u32_f32>(const Config& config);
|
||||
|
||||
std::string
|
||||
DiskFileManagerImpl::GetRemoteIndexFilePrefixV2() const {
|
||||
|
||||
@ -158,7 +158,7 @@ class DiskFileManagerImpl : public FileManagerImpl {
|
||||
CacheRawDataToDisk(const Config& config);
|
||||
|
||||
std::string
|
||||
CacheOptFieldToDisk(OptFieldT& fields_map);
|
||||
CacheOptFieldToDisk(const Config& config);
|
||||
|
||||
std::string
|
||||
GetRemoteIndexPrefix() const {
|
||||
|
||||
@ -300,11 +300,11 @@ BaseEventData::Serialize() {
|
||||
}
|
||||
break;
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
for (size_t offset = 0; offset < field_data->get_num_rows();
|
||||
++offset) {
|
||||
auto row =
|
||||
static_cast<const knowhere::sparse::SparseRow<float>*>(
|
||||
static_cast<const knowhere::sparse::SparseRow<sparseValueType>*>(
|
||||
field_data->RawValue(offset));
|
||||
payload_writer->add_one_binary_payload(
|
||||
static_cast<const uint8_t*>(row->data()),
|
||||
|
||||
@ -32,7 +32,7 @@ PayloadWriter::PayloadWriter(const DataType column_type, bool nullable)
|
||||
// create payload writer for vector data type
|
||||
PayloadWriter::PayloadWriter(const DataType column_type, int dim, bool nullable)
|
||||
: column_type_(column_type), nullable_(nullable) {
|
||||
AssertInfo(column_type != DataType::VECTOR_SPARSE_FLOAT,
|
||||
AssertInfo(column_type != DataType::VECTOR_SPARSE_U32_F32,
|
||||
"PayloadWriter for Sparse Float Vector should be created "
|
||||
"using the constructor without dimension");
|
||||
AssertInfo(nullable == false, "only scalcar type support null now");
|
||||
|
||||
@ -20,6 +20,13 @@ RemoteInputStream::Read(void* data, size_t size) {
|
||||
return static_cast<size_t>(status.ValueOrDie());
|
||||
}
|
||||
|
||||
size_t
|
||||
RemoteInputStream::ReadAt(void* data, size_t offset, size_t size) {
|
||||
auto status = remote_file_->ReadAt(offset, size, data);
|
||||
AssertInfo(status.ok(), "Failed to read from input stream");
|
||||
return static_cast<size_t>(status.ValueOrDie());
|
||||
}
|
||||
|
||||
size_t
|
||||
RemoteInputStream::Read(int fd, size_t size) {
|
||||
size_t read_batch_size =
|
||||
|
||||
@ -29,6 +29,9 @@ class RemoteInputStream : public milvus::InputStream {
|
||||
size_t
|
||||
Read(void* data, size_t size) override;
|
||||
|
||||
size_t
|
||||
ReadAt(void* data, size_t offset, size_t size) override;
|
||||
|
||||
size_t
|
||||
Read(int fd, size_t size) override;
|
||||
|
||||
|
||||
@ -206,7 +206,7 @@ AddPayloadToArrowBuilder(std::shared_ptr<arrow::ArrayBuilder> builder,
|
||||
add_vector_payload(builder, const_cast<uint8_t*>(raw_data), length);
|
||||
break;
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
ThrowInfo(DataTypeInvalid,
|
||||
"Sparse Float Vector payload should be added by calling "
|
||||
"add_one_binary_payload",
|
||||
@ -287,7 +287,7 @@ CreateArrowBuilder(DataType data_type) {
|
||||
return std::make_shared<arrow::BinaryBuilder>();
|
||||
}
|
||||
// sparse float vector doesn't require a dim
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
return std::make_shared<arrow::BinaryBuilder>();
|
||||
}
|
||||
default: {
|
||||
@ -416,7 +416,7 @@ CreateArrowSchema(DataType data_type, bool nullable) {
|
||||
{arrow::field("val", arrow::binary(), nullable)});
|
||||
}
|
||||
// sparse float vector doesn't require a dim
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
return arrow::schema(
|
||||
{arrow::field("val", arrow::binary(), nullable)});
|
||||
}
|
||||
@ -456,7 +456,7 @@ CreateArrowSchema(DataType data_type, int dim, bool nullable) {
|
||||
arrow::fixed_size_binary(dim * sizeof(bfloat16)),
|
||||
nullable)});
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
return arrow::schema(
|
||||
{arrow::field("val", arrow::binary(), nullable)});
|
||||
}
|
||||
@ -490,7 +490,7 @@ GetDimensionFromFileMetaData(const parquet::ColumnDescriptor* schema,
|
||||
case DataType::VECTOR_BFLOAT16: {
|
||||
return schema->type_length() / sizeof(bfloat16);
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
ThrowInfo(DataTypeInvalid,
|
||||
fmt::format("GetDimensionFromFileMetaData should not be "
|
||||
"called for sparse vector"));
|
||||
@ -971,7 +971,7 @@ CreateFieldData(const DataType& type,
|
||||
case DataType::VECTOR_BFLOAT16:
|
||||
return std::make_shared<FieldData<BFloat16Vector>>(
|
||||
dim, type, total_num_rows);
|
||||
case DataType::VECTOR_SPARSE_FLOAT:
|
||||
case DataType::VECTOR_SPARSE_U32_F32:
|
||||
return std::make_shared<FieldData<SparseFloatVector>>(
|
||||
type, total_num_rows);
|
||||
case DataType::VECTOR_INT8:
|
||||
|
||||
@ -14,7 +14,7 @@
|
||||
# Update KNOWHERE_VERSION for the first occurrence
|
||||
milvus_add_pkg_config("knowhere")
|
||||
set_property(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} PROPERTY INCLUDE_DIRECTORIES "")
|
||||
set( KNOWHERE_VERSION v2.6.1-rc )
|
||||
set( KNOWHERE_VERSION v2.6.1 )
|
||||
set( GIT_REPOSITORY "https://github.com/zilliztech/knowhere.git")
|
||||
|
||||
message(STATUS "Knowhere repo: ${GIT_REPOSITORY}")
|
||||
|
||||
@ -13,7 +13,7 @@
|
||||
|
||||
milvus_add_pkg_config("milvus-common")
|
||||
set_property(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} PROPERTY INCLUDE_DIRECTORIES "")
|
||||
set( MILVUS-COMMON-VERSION 41fa9b1 )
|
||||
set( MILVUS-COMMON-VERSION 5770e40 )
|
||||
set( GIT_REPOSITORY "https://github.com/zilliztech/milvus-common.git")
|
||||
|
||||
message(STATUS "milvus-common repo: ${GIT_REPOSITORY}")
|
||||
|
||||
@ -29,7 +29,7 @@ INSTANTIATE_TEST_SUITE_P(
|
||||
ExprAlwaysTrueParameters,
|
||||
ExprAlwaysTrueTest,
|
||||
::testing::Values(milvus::DataType::VECTOR_FLOAT,
|
||||
milvus::DataType::VECTOR_SPARSE_FLOAT));
|
||||
milvus::DataType::VECTOR_SPARSE_U32_F32));
|
||||
|
||||
TEST_P(ExprAlwaysTrueTest, AlwaysTrue) {
|
||||
using namespace milvus;
|
||||
|
||||
@ -27,8 +27,8 @@ using namespace milvus::query;
|
||||
namespace {
|
||||
|
||||
std::vector<int>
|
||||
SearchRef(const knowhere::sparse::SparseRow<float>* base,
|
||||
const knowhere::sparse::SparseRow<float>& query,
|
||||
SearchRef(const knowhere::sparse::SparseRow<milvus::sparseValueType>* base,
|
||||
const knowhere::sparse::SparseRow<milvus::sparseValueType>& query,
|
||||
int nb,
|
||||
int topk) {
|
||||
std::vector<std::tuple<float, int>> res;
|
||||
@ -51,8 +51,8 @@ SearchRef(const knowhere::sparse::SparseRow<float>* base,
|
||||
}
|
||||
|
||||
std::vector<int>
|
||||
RangeSearchRef(const knowhere::sparse::SparseRow<float>* base,
|
||||
const knowhere::sparse::SparseRow<float>& query,
|
||||
RangeSearchRef(const knowhere::sparse::SparseRow<milvus::sparseValueType>* base,
|
||||
const knowhere::sparse::SparseRow<milvus::sparseValueType>& query,
|
||||
int nb,
|
||||
float radius,
|
||||
float range_filter,
|
||||
@ -113,7 +113,7 @@ class TestSparseFloatSearchBruteForce : public ::testing::Test {
|
||||
search_info,
|
||||
index_info,
|
||||
bitset_view,
|
||||
DataType::VECTOR_SPARSE_FLOAT,
|
||||
DataType::VECTOR_SPARSE_U32_F32,
|
||||
DataType::NONE));
|
||||
return;
|
||||
}
|
||||
@ -122,7 +122,7 @@ class TestSparseFloatSearchBruteForce : public ::testing::Test {
|
||||
search_info,
|
||||
index_info,
|
||||
bitset_view,
|
||||
DataType::VECTOR_SPARSE_FLOAT,
|
||||
DataType::VECTOR_SPARSE_U32_F32,
|
||||
DataType::NONE);
|
||||
for (int i = 0; i < nq; i++) {
|
||||
auto ref = SearchRef(base.get(), *(query.get() + i), nb, topk);
|
||||
@ -137,7 +137,7 @@ class TestSparseFloatSearchBruteForce : public ::testing::Test {
|
||||
search_info,
|
||||
index_info,
|
||||
bitset_view,
|
||||
DataType::VECTOR_SPARSE_FLOAT,
|
||||
DataType::VECTOR_SPARSE_U32_F32,
|
||||
DataType::NONE);
|
||||
for (int i = 0; i < nq; i++) {
|
||||
auto ref = RangeSearchRef(
|
||||
@ -152,7 +152,7 @@ class TestSparseFloatSearchBruteForce : public ::testing::Test {
|
||||
search_info,
|
||||
index_info,
|
||||
bitset_view,
|
||||
DataType::VECTOR_SPARSE_FLOAT);
|
||||
DataType::VECTOR_SPARSE_U32_F32);
|
||||
auto iterators = result3.chunk_iterators();
|
||||
for (int i = 0; i < nq; i++) {
|
||||
auto it = iterators[i];
|
||||
|
||||
@ -91,7 +91,7 @@ class BinlogIndexTest : public ::testing::TestWithParam<Param> {
|
||||
} else {
|
||||
intermin_index_has_raw_data = true;
|
||||
}
|
||||
} else if (data_type == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
} else if (data_type == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
auto sparse_vecs = GenerateRandomSparseFloatVector(data_n);
|
||||
vec_field_data->FillFieldData(sparse_vecs.get(), data_n);
|
||||
data_d = std::dynamic_pointer_cast<
|
||||
@ -190,12 +190,12 @@ INSTANTIATE_TEST_SUITE_P(
|
||||
knowhere::IndexEnum::
|
||||
INDEX_FAISS_SCANN_DVR), // intermin index not has data
|
||||
std::make_tuple(
|
||||
DataType::VECTOR_SPARSE_FLOAT,
|
||||
DataType::VECTOR_SPARSE_U32_F32,
|
||||
knowhere::metric::IP,
|
||||
knowhere::IndexEnum::
|
||||
INDEX_SPARSE_INVERTED_INDEX, //intermin index not has data
|
||||
std::nullopt),
|
||||
std::make_tuple(DataType::VECTOR_SPARSE_FLOAT,
|
||||
std::make_tuple(DataType::VECTOR_SPARSE_U32_F32,
|
||||
knowhere::metric::IP,
|
||||
knowhere::IndexEnum::
|
||||
INDEX_SPARSE_WAND, // intermin index not has data
|
||||
|
||||
@ -568,7 +568,7 @@ TEST(chunk, test_sparse_float) {
|
||||
auto vecs = milvus::segcore::GenerateRandomSparseFloatVector(
|
||||
n_rows, kTestSparseDim, kTestSparseVectorDensity);
|
||||
auto field_data = milvus::storage::CreateFieldData(
|
||||
storage::DataType::VECTOR_SPARSE_FLOAT, false, kTestSparseDim, n_rows);
|
||||
storage::DataType::VECTOR_SPARSE_U32_F32, false, kTestSparseDim, n_rows);
|
||||
field_data->FillFieldData(vecs.get(), n_rows);
|
||||
|
||||
storage::InsertEventData event_data;
|
||||
@ -593,7 +593,7 @@ TEST(chunk, test_sparse_float) {
|
||||
|
||||
FieldMeta field_meta(FieldName("a"),
|
||||
milvus::FieldId(1),
|
||||
DataType::VECTOR_SPARSE_FLOAT,
|
||||
DataType::VECTOR_SPARSE_U32_F32,
|
||||
kTestSparseDim,
|
||||
"IP",
|
||||
false,
|
||||
|
||||
@ -71,7 +71,7 @@ TEST_F(ChunkVectorTest, FillDataWithMmap) {
|
||||
auto bf16_vec = schema->AddDebugField(
|
||||
"bf16_vec", DataType::VECTOR_BFLOAT16, 128, metric_type);
|
||||
auto sparse_vec = schema->AddDebugField(
|
||||
"sparse_vec", DataType::VECTOR_SPARSE_FLOAT, 128, metric_type);
|
||||
"sparse_vec", DataType::VECTOR_SPARSE_U32_F32, 128, metric_type);
|
||||
auto int8_vec = schema->AddDebugField(
|
||||
"int8_vec", DataType::VECTOR_INT8, 128, metric_type);
|
||||
schema->set_primary_field_id(int64_field);
|
||||
@ -200,7 +200,7 @@ TEST_F(ChunkVectorTest, FillDataWithMmap) {
|
||||
auto fp16_vec_gt = dataset.get_col<float16>(fp16_vec);
|
||||
auto bf16_vec_gt = dataset.get_col<bfloat16>(bf16_vec);
|
||||
auto sparse_vec_gt =
|
||||
dataset.get_col<knowhere::sparse::SparseRow<float>>(sparse_vec);
|
||||
dataset.get_col<knowhere::sparse::SparseRow<milvus::sparseValueType>>(sparse_vec);
|
||||
auto int8_vec_gt = dataset.get_col<int8>(int8_vec);
|
||||
|
||||
for (size_t i = 0; i < num_inserted; ++i) {
|
||||
@ -234,7 +234,7 @@ INSTANTIATE_TEST_SUITE_P(IsSparse, ChunkVectorTest, ::testing::Bool());
|
||||
TEST_P(ChunkVectorTest, SearchWithMmap) {
|
||||
auto is_sparse = GetParam();
|
||||
auto data_type =
|
||||
is_sparse ? DataType::VECTOR_SPARSE_FLOAT : DataType::VECTOR_FLOAT;
|
||||
is_sparse ? DataType::VECTOR_SPARSE_U32_F32 : DataType::VECTOR_FLOAT;
|
||||
auto schema = std::make_shared<Schema>();
|
||||
auto pk = schema->AddDebugField("pk", DataType::INT64);
|
||||
auto random = schema->AddDebugField("random", DataType::DOUBLE);
|
||||
|
||||
@ -591,7 +591,7 @@ TEST(storage, InsertDataSparseFloat) {
|
||||
auto vecs = milvus::segcore::GenerateRandomSparseFloatVector(
|
||||
n_rows, kTestSparseDim, kTestSparseVectorDensity);
|
||||
auto field_data = milvus::storage::CreateFieldData(
|
||||
storage::DataType::VECTOR_SPARSE_FLOAT, false, kTestSparseDim, n_rows);
|
||||
storage::DataType::VECTOR_SPARSE_U32_F32, false, kTestSparseDim, n_rows);
|
||||
field_data->FillFieldData(vecs.get(), n_rows);
|
||||
|
||||
auto payload_reader =
|
||||
@ -611,10 +611,10 @@ TEST(storage, InsertDataSparseFloat) {
|
||||
std::make_pair(Timestamp(0), Timestamp(100)));
|
||||
auto new_payload = new_insert_data->GetFieldData();
|
||||
ASSERT_TRUE(new_payload->get_data_type() ==
|
||||
storage::DataType::VECTOR_SPARSE_FLOAT);
|
||||
storage::DataType::VECTOR_SPARSE_U32_F32);
|
||||
ASSERT_EQ(new_payload->get_num_rows(), n_rows);
|
||||
ASSERT_EQ(new_payload->get_null_count(), 0);
|
||||
auto new_data = static_cast<const knowhere::sparse::SparseRow<float>*>(
|
||||
auto new_data = static_cast<const knowhere::sparse::SparseRow<milvus::sparseValueType>*>(
|
||||
new_payload->Data());
|
||||
|
||||
for (auto i = 0; i < n_rows; ++i) {
|
||||
|
||||
@ -455,16 +455,20 @@ TEST_F(DiskAnnFileManagerTest, CacheOptFieldToDiskOptFieldMoreThanOne) {
|
||||
PrepareOptionalField<DataType::INT64>(file_manager, insert_file_path);
|
||||
opt_fields[kOptFieldId + 1] = {
|
||||
kOptFieldName + "second", DataType::INT64, {insert_file_path}};
|
||||
EXPECT_THROW(file_manager->CacheOptFieldToDisk(opt_fields), SegcoreError);
|
||||
milvus::Config config;
|
||||
config[VEC_OPT_FIELDS] = opt_fields;
|
||||
EXPECT_THROW(file_manager->CacheOptFieldToDisk(config), SegcoreError);
|
||||
}
|
||||
|
||||
TEST_F(DiskAnnFileManagerTest, CacheOptFieldToDiskSpaceCorrect) {
|
||||
auto file_manager = CreateFileManager(cm_);
|
||||
const auto insert_file_path =
|
||||
PrepareInsertData<DataType::INT64, int64_t>(kOptFieldDataRange);
|
||||
auto opt_fileds =
|
||||
auto opt_fields =
|
||||
PrepareOptionalField<DataType::INT64>(file_manager, insert_file_path);
|
||||
auto res = file_manager->CacheOptFieldToDisk(opt_fileds);
|
||||
milvus::Config config;
|
||||
config[VEC_OPT_FIELDS] = opt_fields;
|
||||
auto res = file_manager->CacheOptFieldToDisk(config);
|
||||
ASSERT_FALSE(res.empty());
|
||||
CheckOptFieldCorrectness(res);
|
||||
}
|
||||
@ -475,7 +479,9 @@ TEST_F(DiskAnnFileManagerTest, CacheOptFieldToDiskSpaceCorrect) {
|
||||
auto insert_file_path = PrepareInsertData<TYPE, NATIVE_TYPE>(RANGE); \
|
||||
auto opt_fields = \
|
||||
PrepareOptionalField<TYPE>(file_manager, insert_file_path); \
|
||||
auto res = file_manager->CacheOptFieldToDisk(opt_fields); \
|
||||
milvus::Config config; \
|
||||
config[VEC_OPT_FIELDS] = opt_fields; \
|
||||
auto res = file_manager->CacheOptFieldToDisk(config); \
|
||||
ASSERT_FALSE(res.empty()); \
|
||||
CheckOptFieldCorrectness(res, RANGE); \
|
||||
};
|
||||
@ -496,9 +502,11 @@ TEST_F(DiskAnnFileManagerTest, CacheOptFieldToDiskOnlyOneCategory) {
|
||||
{
|
||||
const auto insert_file_path =
|
||||
PrepareInsertData<DataType::INT64, int64_t>(1);
|
||||
auto opt_fileds = PrepareOptionalField<DataType::INT64>(
|
||||
auto opt_fields = PrepareOptionalField<DataType::INT64>(
|
||||
file_manager, insert_file_path);
|
||||
auto res = file_manager->CacheOptFieldToDisk(opt_fileds);
|
||||
milvus::Config config;
|
||||
config[VEC_OPT_FIELDS] = opt_fields;
|
||||
auto res = file_manager->CacheOptFieldToDisk(config);
|
||||
ASSERT_TRUE(res.empty());
|
||||
}
|
||||
}
|
||||
|
||||
@ -105,7 +105,7 @@ class TaskTest : public testing::TestWithParam<DataType> {
|
||||
INSTANTIATE_TEST_SUITE_P(TaskTestSuite,
|
||||
TaskTest,
|
||||
::testing::Values(DataType::VECTOR_FLOAT,
|
||||
DataType::VECTOR_SPARSE_FLOAT));
|
||||
DataType::VECTOR_SPARSE_U32_F32));
|
||||
|
||||
TEST_P(TaskTest, RegisterFunction) {
|
||||
milvus::exec::expression::FunctionFactory& factory =
|
||||
|
||||
@ -95,7 +95,7 @@ INSTANTIATE_TEST_SUITE_P(
|
||||
std::make_tuple(std::pair(milvus::DataType::VECTOR_FLOAT,
|
||||
knowhere::metric::L2),
|
||||
false),
|
||||
std::make_tuple(std::pair(milvus::DataType::VECTOR_SPARSE_FLOAT,
|
||||
std::make_tuple(std::pair(milvus::DataType::VECTOR_SPARSE_U32_F32,
|
||||
knowhere::metric::IP),
|
||||
false),
|
||||
std::make_tuple(std::pair(milvus::DataType::VECTOR_BINARY,
|
||||
@ -104,7 +104,7 @@ INSTANTIATE_TEST_SUITE_P(
|
||||
std::make_tuple(std::pair(milvus::DataType::VECTOR_FLOAT,
|
||||
knowhere::metric::L2),
|
||||
true),
|
||||
std::make_tuple(std::pair(milvus::DataType::VECTOR_SPARSE_FLOAT,
|
||||
std::make_tuple(std::pair(milvus::DataType::VECTOR_SPARSE_U32_F32,
|
||||
knowhere::metric::IP),
|
||||
true),
|
||||
std::make_tuple(std::pair(milvus::DataType::VECTOR_BINARY,
|
||||
|
||||
@ -109,7 +109,7 @@ class GrowingTest
|
||||
} else if (index_type ==
|
||||
knowhere::IndexEnum::INDEX_SPARSE_INVERTED_INDEX ||
|
||||
index_type == knowhere::IndexEnum::INDEX_SPARSE_WAND) {
|
||||
data_type = DataType::VECTOR_SPARSE_FLOAT;
|
||||
data_type = DataType::VECTOR_SPARSE_U32_F32;
|
||||
} else {
|
||||
ASSERT_TRUE(false);
|
||||
}
|
||||
@ -242,7 +242,7 @@ TEST_P(GrowingTest, FillData) {
|
||||
if (data_type == DataType::VECTOR_FLOAT) {
|
||||
EXPECT_EQ(vec_result->vectors().float_vector().data_size(),
|
||||
num_inserted * dim);
|
||||
} else if (data_type == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
} else if (data_type == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
EXPECT_EQ(
|
||||
vec_result->vectors().sparse_float_vector().contents_size(),
|
||||
num_inserted);
|
||||
|
||||
@ -41,7 +41,7 @@ class GrowingIndexTest : public ::testing::TestWithParam<Param> {
|
||||
metric_type = std::get<2>(param);
|
||||
dense_vec_intermin_index_type = std::get<3>(param);
|
||||
dense_refine_type = std::get<4>(param);
|
||||
if (data_type == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
if (data_type == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
is_sparse = true;
|
||||
if (metric_type == knowhere::metric::IP) {
|
||||
intermin_index_with_raw_data = true;
|
||||
@ -108,7 +108,7 @@ INSTANTIATE_TEST_SUITE_P(
|
||||
SparseIndexTypeParameters,
|
||||
GrowingIndexTest,
|
||||
::testing::Combine(
|
||||
::testing::Values(DataType::VECTOR_SPARSE_FLOAT),
|
||||
::testing::Values(DataType::VECTOR_SPARSE_U32_F32),
|
||||
// VecIndexConfig will convert INDEX_SPARSE_INVERTED_INDEX/
|
||||
// INDEX_SPARSE_WAND to INDEX_SPARSE_INVERTED_INDEX_CC/
|
||||
// INDEX_SPARSE_WAND_CC, thus no need to use _CC version here.
|
||||
@ -409,7 +409,7 @@ TEST_P(GrowingIndexTest, AddWithoutBuildPool) {
|
||||
}
|
||||
EXPECT_EQ(index->Count(), (add_cont + 1) * N);
|
||||
} else if (is_sparse) {
|
||||
auto index = std::make_unique<milvus::index::VectorMemIndex<float>>(
|
||||
auto index = std::make_unique<milvus::index::VectorMemIndex<sparse_u32_f32>>(
|
||||
DataType::NONE,
|
||||
index_type,
|
||||
metric_type,
|
||||
@ -417,7 +417,7 @@ TEST_P(GrowingIndexTest, AddWithoutBuildPool) {
|
||||
false,
|
||||
milvus::storage::FileManagerContext());
|
||||
auto sparse_data =
|
||||
dataset.get_col<knowhere::sparse::SparseRow<float>>(vec);
|
||||
dataset.get_col<knowhere::sparse::SparseRow<milvus::sparseValueType>>(vec);
|
||||
index->BuildWithDataset(
|
||||
knowhere::GenDataSet(N, dim, sparse_data.data()), build_config);
|
||||
for (int i = 0; i < add_cont; i++) {
|
||||
@ -560,14 +560,14 @@ TEST_P(GrowingIndexTest, GetVector) {
|
||||
}
|
||||
}
|
||||
} else if (is_sparse) {
|
||||
// GetVector for VECTOR_SPARSE_FLOAT
|
||||
// GetVector for VECTOR_SPARSE_U32_F32
|
||||
int64_t per_batch = 5000;
|
||||
int64_t n_batch = 20;
|
||||
int64_t dim = 128;
|
||||
for (int64_t i = 0; i < n_batch; i++) {
|
||||
auto dataset = DataGen(schema, per_batch);
|
||||
auto fakevec =
|
||||
dataset.get_col<knowhere::sparse::SparseRow<float>>(vec);
|
||||
dataset.get_col<knowhere::sparse::SparseRow<milvus::sparseValueType>>(vec);
|
||||
auto offset = segment->PreInsert(per_batch);
|
||||
segment->Insert(offset,
|
||||
per_batch,
|
||||
|
||||
@ -68,7 +68,7 @@ TestVecIndex() {
|
||||
status = BuildBinaryVecIndex(index, NB * DIM / 8, xb_data.data());
|
||||
} else if (std::is_same_v<TraitType, milvus::SparseFloatVector>) {
|
||||
auto xb_data =
|
||||
dataset.template get_col<knowhere::sparse::SparseRow<float>>(
|
||||
dataset.template get_col<knowhere::sparse::SparseRow<milvus::sparseValueType>>(
|
||||
milvus::FieldId(100));
|
||||
status = BuildSparseFloatVecIndex(
|
||||
index,
|
||||
|
||||
@ -70,9 +70,9 @@ class IndexWrapperTest : public ::testing::TestWithParam<Param> {
|
||||
DataType::VECTOR_BINARY},
|
||||
{knowhere::IndexEnum::INDEX_HNSW, DataType::VECTOR_FLOAT},
|
||||
{knowhere::IndexEnum::INDEX_SPARSE_INVERTED_INDEX,
|
||||
DataType::VECTOR_SPARSE_FLOAT},
|
||||
DataType::VECTOR_SPARSE_U32_F32},
|
||||
{knowhere::IndexEnum::INDEX_SPARSE_WAND,
|
||||
DataType::VECTOR_SPARSE_FLOAT},
|
||||
DataType::VECTOR_SPARSE_U32_F32},
|
||||
};
|
||||
|
||||
vec_field_data_type = index_to_vec_type[index_type];
|
||||
@ -132,9 +132,9 @@ TEST_P(IndexWrapperTest, BuildAndQuery) {
|
||||
auto bin_vecs = dataset.get_col<uint8_t>(milvus::FieldId(100));
|
||||
xb_dataset = knowhere::GenDataSet(NB, DIM, bin_vecs.data());
|
||||
ASSERT_NO_THROW(index->Build(xb_dataset));
|
||||
} else if (vec_field_data_type == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
} else if (vec_field_data_type == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
auto dataset = GenFieldData(NB, metric_type, vec_field_data_type);
|
||||
auto sparse_vecs = dataset.get_col<knowhere::sparse::SparseRow<float>>(
|
||||
auto sparse_vecs = dataset.get_col<knowhere::sparse::SparseRow<milvus::sparseValueType>>(
|
||||
milvus::FieldId(100));
|
||||
xb_dataset =
|
||||
knowhere::GenDataSet(NB, kTestSparseDim, sparse_vecs.data());
|
||||
@ -159,7 +159,7 @@ TEST_P(IndexWrapperTest, BuildAndQuery) {
|
||||
vec_field_data_type, config, file_manager_context);
|
||||
auto vec_index =
|
||||
static_cast<milvus::indexbuilder::VecIndexCreator*>(copy_index.get());
|
||||
if (vec_field_data_type != DataType::VECTOR_SPARSE_FLOAT) {
|
||||
if (vec_field_data_type != DataType::VECTOR_SPARSE_U32_F32) {
|
||||
ASSERT_EQ(vec_index->dim(), DIM);
|
||||
}
|
||||
|
||||
@ -177,9 +177,9 @@ TEST_P(IndexWrapperTest, BuildAndQuery) {
|
||||
auto xq_dataset =
|
||||
knowhere::GenDataSet(NQ, DIM, xb_data.data() + DIM * query_offset);
|
||||
result = vec_index->Query(xq_dataset, search_info, nullptr);
|
||||
} else if (vec_field_data_type == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
} else if (vec_field_data_type == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
auto dataset = GenFieldData(NQ, metric_type, vec_field_data_type);
|
||||
auto xb_data = dataset.get_col<knowhere::sparse::SparseRow<float>>(
|
||||
auto xb_data = dataset.get_col<knowhere::sparse::SparseRow<milvus::sparseValueType>>(
|
||||
milvus::FieldId(100));
|
||||
auto xq_dataset =
|
||||
knowhere::GenDataSet(NQ, kTestSparseDim, xb_data.data());
|
||||
|
||||
@ -331,7 +331,7 @@ class IndexTest : public ::testing::TestWithParam<Param> {
|
||||
if (index_type == knowhere::IndexEnum::INDEX_SPARSE_INVERTED_INDEX ||
|
||||
index_type == knowhere::IndexEnum::INDEX_SPARSE_WAND) {
|
||||
is_sparse = true;
|
||||
vec_field_data_type = milvus::DataType::VECTOR_SPARSE_FLOAT;
|
||||
vec_field_data_type = milvus::DataType::VECTOR_SPARSE_U32_F32;
|
||||
} else if (IsBinaryVectorMetricType(metric_type)) {
|
||||
is_binary = true;
|
||||
vec_field_data_type = milvus::DataType::VECTOR_BINARY;
|
||||
@ -349,7 +349,7 @@ class IndexTest : public ::testing::TestWithParam<Param> {
|
||||
} else if (is_sparse) {
|
||||
// sparse vector
|
||||
xb_sparse_data =
|
||||
dataset.get_col<knowhere::sparse::SparseRow<float>>(
|
||||
dataset.get_col<knowhere::sparse::SparseRow<milvus::sparseValueType>>(
|
||||
milvus::FieldId(100));
|
||||
xb_dataset =
|
||||
knowhere::GenDataSet(NB, kTestSparseDim, xb_sparse_data.data());
|
||||
@ -382,7 +382,7 @@ class IndexTest : public ::testing::TestWithParam<Param> {
|
||||
knowhere::DataSetPtr xb_dataset;
|
||||
FixedVector<float> xb_data;
|
||||
FixedVector<uint8_t> xb_bin_data;
|
||||
FixedVector<knowhere::sparse::SparseRow<float>> xb_sparse_data;
|
||||
FixedVector<knowhere::sparse::SparseRow<milvus::sparseValueType>> xb_sparse_data;
|
||||
knowhere::DataSetPtr xq_dataset;
|
||||
int64_t query_offset = 100;
|
||||
int64_t NB = 3000; // will be updated to 27000 for mmap+hnsw
|
||||
@ -686,7 +686,7 @@ TEST_P(IndexTest, GetVector_EmptySparseVector) {
|
||||
}
|
||||
NB = 3;
|
||||
|
||||
std::vector<knowhere::sparse::SparseRow<float>> vec;
|
||||
std::vector<knowhere::sparse::SparseRow<milvus::sparseValueType>> vec;
|
||||
vec.reserve(NB);
|
||||
vec.emplace_back(2);
|
||||
vec[0].set_at(0, 1, 1.0);
|
||||
|
||||
@ -47,8 +47,8 @@ class IndexLoadTest : public ::testing::TestWithParam<Param> {
|
||||
data_type = milvus::DataType::VECTOR_FLOAT16;
|
||||
} else if (field_type == "vector_binary") {
|
||||
data_type = milvus::DataType::VECTOR_BINARY;
|
||||
} else if (field_type == "vector_sparse_float") {
|
||||
data_type = milvus::DataType::VECTOR_SPARSE_FLOAT;
|
||||
} else if (field_type == "VECTOR_SPARSE_U32_F32") {
|
||||
data_type = milvus::DataType::VECTOR_SPARSE_U32_F32;
|
||||
} else if (field_type == "vector_int8") {
|
||||
data_type = milvus::DataType::VECTOR_INT8;
|
||||
} else if (field_type == "array") {
|
||||
|
||||
@ -46,7 +46,7 @@ class RetrieveTest : public ::testing::TestWithParam<Param> {
|
||||
INSTANTIATE_TEST_SUITE_P(RetrieveTest,
|
||||
RetrieveTest,
|
||||
::testing::Values(DataType::VECTOR_FLOAT,
|
||||
DataType::VECTOR_SPARSE_FLOAT));
|
||||
DataType::VECTOR_SPARSE_U32_F32));
|
||||
|
||||
TEST_P(RetrieveTest, AutoID) {
|
||||
auto schema = std::make_shared<Schema>();
|
||||
@ -422,7 +422,7 @@ TEST_P(RetrieveTest, LargeTimestamp) {
|
||||
Assert(field_data.vectors().float_vector().data_size() ==
|
||||
target_num * DIM);
|
||||
}
|
||||
if (DataType(field_data.type()) == DataType::VECTOR_SPARSE_FLOAT) {
|
||||
if (DataType(field_data.type()) == DataType::VECTOR_SPARSE_U32_F32) {
|
||||
Assert(field_data.vectors()
|
||||
.sparse_float_vector()
|
||||
.contents_size() == target_num);
|
||||
|
||||
@ -97,8 +97,8 @@ TEST(GetArrowDataTypeTest, VECTOR_BFLOAT16) {
|
||||
ASSERT_TRUE(result->Equals(arrow::fixed_size_binary(dim * 2)));
|
||||
}
|
||||
|
||||
TEST(GetArrowDataTypeTest, VECTOR_SPARSE_FLOAT) {
|
||||
auto result = GetArrowDataType(DataType::VECTOR_SPARSE_FLOAT);
|
||||
TEST(GetArrowDataTypeTest, VECTOR_SPARSE_U32_F32) {
|
||||
auto result = GetArrowDataType(DataType::VECTOR_SPARSE_U32_F32);
|
||||
ASSERT_TRUE(result->Equals(arrow::binary()));
|
||||
}
|
||||
|
||||
|
||||
@ -114,7 +114,7 @@ struct GeneratedData {
|
||||
} else {
|
||||
if (field_meta.is_vector() &&
|
||||
field_meta.get_data_type() !=
|
||||
DataType::VECTOR_SPARSE_FLOAT) {
|
||||
DataType::VECTOR_SPARSE_U32_F32) {
|
||||
if (field_meta.get_data_type() == DataType::VECTOR_FLOAT) {
|
||||
int len = raw_->num_rows() * field_meta.get_dim();
|
||||
ret.resize(len);
|
||||
@ -164,7 +164,7 @@ struct GeneratedData {
|
||||
}
|
||||
if constexpr (std::is_same_v<
|
||||
T,
|
||||
knowhere::sparse::SparseRow<float>>) {
|
||||
knowhere::sparse::SparseRow<milvus::sparseValueType>>) {
|
||||
auto sparse_float_array =
|
||||
target_field_data.vectors().sparse_float_vector();
|
||||
auto rows =
|
||||
@ -301,7 +301,7 @@ struct GeneratedData {
|
||||
int array_len);
|
||||
};
|
||||
|
||||
inline std::unique_ptr<knowhere::sparse::SparseRow<float>[]>
|
||||
inline std::unique_ptr<knowhere::sparse::SparseRow<milvus::sparseValueType>[]>
|
||||
GenerateRandomSparseFloatVector(size_t rows,
|
||||
size_t cols = kTestSparseDim,
|
||||
float density = kTestSparseVectorDensity,
|
||||
@ -340,13 +340,13 @@ GenerateRandomSparseFloatVector(size_t rows,
|
||||
data[row][col] = val;
|
||||
}
|
||||
|
||||
auto tensor = std::make_unique<knowhere::sparse::SparseRow<float>[]>(rows);
|
||||
auto tensor = std::make_unique<knowhere::sparse::SparseRow<milvus::sparseValueType>[]>(rows);
|
||||
|
||||
for (int32_t i = 0; i < rows; ++i) {
|
||||
if (data[i].size() == 0) {
|
||||
continue;
|
||||
}
|
||||
knowhere::sparse::SparseRow<float> row(data[i].size());
|
||||
knowhere::sparse::SparseRow<milvus::sparseValueType> row(data[i].size());
|
||||
size_t j = 0;
|
||||
for (auto& [idx, val] : data[i]) {
|
||||
row.set_at(j++, idx, val);
|
||||
@ -544,7 +544,7 @@ DataGen(SchemaPtr schema,
|
||||
insert_cols(data, N, field_meta, random_valid);
|
||||
break;
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
auto res = GenerateRandomSparseFloatVector(
|
||||
N, kTestSparseDim, kTestSparseVectorDensity, seed);
|
||||
auto array = milvus::segcore::CreateDataArrayFrom(
|
||||
@ -595,7 +595,7 @@ DataGen(SchemaPtr schema,
|
||||
obj->assign(data, length * sizeof(float16));
|
||||
break;
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT:
|
||||
case DataType::VECTOR_SPARSE_U32_F32:
|
||||
ThrowInfo(DataTypeInvalid, "not implemented");
|
||||
break;
|
||||
case DataType::VECTOR_BFLOAT16: {
|
||||
@ -1195,10 +1195,10 @@ CreateFieldDataFromDataArray(ssize_t raw_count,
|
||||
createFieldData(raw_data, DataType::VECTOR_BFLOAT16, dim);
|
||||
break;
|
||||
}
|
||||
case DataType::VECTOR_SPARSE_FLOAT: {
|
||||
case DataType::VECTOR_SPARSE_U32_F32: {
|
||||
auto sparse_float_array = data->vectors().sparse_float_vector();
|
||||
auto rows = SparseBytesToRows(sparse_float_array.contents());
|
||||
createFieldData(rows.get(), DataType::VECTOR_SPARSE_FLOAT, 0);
|
||||
createFieldData(rows.get(), DataType::VECTOR_SPARSE_U32_F32, 0);
|
||||
break;
|
||||
}
|
||||
case DataType::VECTOR_INT8: {
|
||||
|
||||
@ -234,7 +234,7 @@ GenFieldData(int64_t N,
|
||||
schema->AddDebugField(
|
||||
"fakevec",
|
||||
data_type,
|
||||
(data_type != milvus::DataType::VECTOR_SPARSE_FLOAT ? dim : 0),
|
||||
(data_type != milvus::DataType::VECTOR_SPARSE_U32_F32 ? dim : 0),
|
||||
metric_type);
|
||||
return milvus::segcore::DataGen(schema, N);
|
||||
}
|
||||
|
||||
@ -259,6 +259,9 @@ func (node *QueryNode) InitSegcore() error {
|
||||
cKnowhereThreadPoolSize := C.uint32_t(paramtable.Get().QueryNodeCfg.KnowhereThreadPoolSize.GetAsUint32())
|
||||
C.SegcoreSetKnowhereSearchThreadPoolNum(cKnowhereThreadPoolSize)
|
||||
|
||||
cKnowhereFetchThreadPoolSize := C.uint32_t(paramtable.Get().QueryNodeCfg.KnowhereFetchThreadPoolSize.GetAsUint32())
|
||||
C.SegcoreSetKnowhereFetchThreadPoolNum(cKnowhereFetchThreadPoolSize)
|
||||
|
||||
// override segcore SIMD type
|
||||
cSimdType := C.CString(paramtable.Get().CommonCfg.SimdType.GetValue())
|
||||
C.SegcoreSetSimdType(cSimdType)
|
||||
|
||||
@ -2879,6 +2879,7 @@ type queryNodeConfig struct {
|
||||
StatsPublishInterval ParamItem `refreshable:"true"`
|
||||
|
||||
// segcore
|
||||
KnowhereFetchThreadPoolSize ParamItem `refreshable:"false"`
|
||||
KnowhereThreadPoolSize ParamItem `refreshable:"false"`
|
||||
ChunkRows ParamItem `refreshable:"false"`
|
||||
EnableInterminSegmentIndex ParamItem `refreshable:"false"`
|
||||
@ -3322,6 +3323,25 @@ If set to 0, time based eviction is disabled.`,
|
||||
}
|
||||
p.KnowhereThreadPoolSize.Init(base.mgr)
|
||||
|
||||
p.KnowhereFetchThreadPoolSize = ParamItem{
|
||||
Key: "queryNode.segcore.knowhereFetchThreadPoolNumRatio",
|
||||
Version: "2.6.0",
|
||||
DefaultValue: "4",
|
||||
Formatter: func(v string) string {
|
||||
factor := getAsInt64(v)
|
||||
if factor <= 0 {
|
||||
factor = 1
|
||||
} else if factor > 32 {
|
||||
factor = 32
|
||||
}
|
||||
knowhereFetchThreadPoolSize := uint32(hardware.GetCPUNum()) * uint32(factor)
|
||||
return strconv.FormatUint(uint64(knowhereFetchThreadPoolSize), 10)
|
||||
},
|
||||
Doc: "The number of threads in knowhere's fetch thread pool for object storage. The pool size will multiply with knowhereThreadPoolNumRatio([1, 32])",
|
||||
Export: false,
|
||||
}
|
||||
p.KnowhereFetchThreadPoolSize.Init(base.mgr)
|
||||
|
||||
p.ChunkRows = ParamItem{
|
||||
Key: "queryNode.segcore.chunkRows",
|
||||
Version: "2.0.0",
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user