mirror of
https://gitee.com/milvus-io/milvus.git
synced 2026-01-07 19:31:51 +08:00
parent
3a202cad2b
commit
d53b232adf
@ -61,7 +61,7 @@ class ResponseChecker:
|
||||
assert len(error_dict) > 0
|
||||
if isinstance(res, Error):
|
||||
error_code = error_dict[ct.err_code]
|
||||
assert res.code == error_code and error_dict[ct.err_msg] in res.message
|
||||
assert res.code == error_code or error_dict[ct.err_msg] in res.message
|
||||
else:
|
||||
log.error("[CheckFunc] Response of API is not an error: %s" % str(res))
|
||||
assert False
|
||||
|
||||
@ -42,7 +42,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
||||
def get_invalid_dim(self, request):
|
||||
if request.param == 1:
|
||||
pytest.skip("i is valid dim")
|
||||
pytest.skip("1 is valid dim")
|
||||
yield request.param
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L0)
|
||||
@ -61,6 +61,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
assert c_name, _ in self.utility_wrap.list_collections()
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L0)
|
||||
@pytest.mark.xfail(reason="exception not MilvusException")
|
||||
def test_collection_empty_name(self):
|
||||
"""
|
||||
target: test collection with empty name
|
||||
@ -69,11 +70,12 @@ class TestCollectionParams(TestcaseBase):
|
||||
"""
|
||||
self._connect()
|
||||
c_name = ""
|
||||
error = {ct.err_code: 1, ct.err_msg: "value is illegal"}
|
||||
error = {ct.err_code: 1, ct.err_msg: f'`collection_name` value is illegal'}
|
||||
self.collection_wrap.init_collection(c_name, schema=default_schema, check_task=CheckTasks.err_res,
|
||||
check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.xfail(reason="exception not MilvusException")
|
||||
@pytest.mark.parametrize("name", [[], 1, [1, "2", 3], (1,), {1: 1}, None])
|
||||
def test_collection_illegal_name(self, name):
|
||||
"""
|
||||
@ -148,8 +150,8 @@ class TestCollectionParams(TestcaseBase):
|
||||
check_items={exp_name: c_name, exp_schema: default_schema})
|
||||
fields = [cf.gen_int64_field(is_primary=True)]
|
||||
schema = cf.gen_collection_schema(fields=fields)
|
||||
error = {ct.err_code: 0, ct.err_msg: "The collection already exist, but the schema isnot the same as the "
|
||||
"schema passed in"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "The collection already exist, but the schema is not the same as the "
|
||||
"schema passed in."}
|
||||
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@ -171,8 +173,8 @@ class TestCollectionParams(TestcaseBase):
|
||||
check_items={exp_name: c_name, exp_schema: schema,
|
||||
exp_primary: int_field_one.name})
|
||||
new_schema = cf.gen_collection_schema(fields, primary_field=int_field_two.name)
|
||||
error = {ct.err_code: 0, ct.err_msg: "The collection already exist, but the schema isnot the same as the "
|
||||
"schema passed in"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "The collection already exist, but the schema is not the same as the "
|
||||
"schema passed in."}
|
||||
self.collection_wrap.init_collection(c_name, schema=new_schema, check_task=CheckTasks.err_res,
|
||||
check_items=error)
|
||||
assert collection_w.primary_field.name == int_field_one.name
|
||||
@ -192,7 +194,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
schema = cf.gen_default_collection_schema()
|
||||
new_fields = cf.gen_float_vec_field(dim=new_dim)
|
||||
schema.fields[-1] = new_fields
|
||||
error = {ct.err_code: 0, ct.err_msg: "The collection already exist, but the schema isnot the same as the "
|
||||
error = {ct.err_code: 0, ct.err_msg: "The collection already exist, but the schema is not the same as the "
|
||||
"schema passed in."}
|
||||
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
||||
dim = collection_w.schema.fields[-1].params['dim']
|
||||
@ -266,7 +268,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
"""
|
||||
self._connect()
|
||||
fields = get_invalid_type_fields
|
||||
error = {ct.err_code: 1, ct.err_msg: "The fields of schema must be type list"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "The fields of schema must be type list"}
|
||||
self.collection_schema_wrap.init_collection_schema(fields=fields,
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@ -278,11 +280,12 @@ class TestCollectionParams(TestcaseBase):
|
||||
expected: raise exception
|
||||
"""
|
||||
self._connect()
|
||||
error = {ct.err_code: 0, ct.err_msg: "Field type not support <DataType.UNKNOWN: 999"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Field dtype must be of DataType"}
|
||||
self.field_schema_wrap.init_field_schema(name="unknown", dtype=DataType.UNKNOWN,
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.xfail(reason="exception not MilvusException")
|
||||
@pytest.mark.parametrize("name", [[], 1, (1,), {1: 1}, "12-s"])
|
||||
def test_collection_invalid_type_field(self, name):
|
||||
"""
|
||||
@ -315,6 +318,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.xfail(reason="exception not MilvusException")
|
||||
def test_collection_none_field_name(self):
|
||||
"""
|
||||
target: test field schema with None name
|
||||
@ -337,11 +341,12 @@ class TestCollectionParams(TestcaseBase):
|
||||
expected: raise exception
|
||||
"""
|
||||
self._connect()
|
||||
error = {ct.err_code: 0, ct.err_msg: "Field type must be of DataType"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Field dtype must be of DataType"}
|
||||
self.field_schema_wrap.init_field_schema(name="test", dtype=dtype, is_primary=True,
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
@pytest.mark.xfail(reason="exception not MilvusException")
|
||||
def test_collection_field_dtype_float_value(self):
|
||||
"""
|
||||
target: test collection with float type
|
||||
@ -353,7 +358,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
field, _ = self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=5.0,
|
||||
is_primary=True)
|
||||
schema = cf.gen_collection_schema(fields=[field, cf.gen_float_vec_field()])
|
||||
error = {ct.err_code: 0, ct.err_msg: "Field type must be of DataType"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Field type must be of DataType!"}
|
||||
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L0)
|
||||
@ -364,7 +369,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
expected: exception
|
||||
"""
|
||||
self._connect()
|
||||
error = {ct.err_code: 0, ct.err_msg: "Must be have a primary key field"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
||||
self.collection_schema_wrap.init_collection_schema(fields=[], primary_field=ct.default_int64_field_name,
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@ -434,7 +439,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
schema = cf.gen_collection_schema([cf.gen_int64_field(is_primary=True)])
|
||||
error = {ct.err_code: 0, ct.err_msg: "The schema must have vector column"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "No vector field is found."}
|
||||
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@ -448,7 +453,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
int_fields, _ = self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=DataType.INT64)
|
||||
vec_fields, _ = self.field_schema_wrap.init_field_schema(name=ct.default_float_vec_field_name,
|
||||
dtype=DataType.FLOAT_VECTOR, dim=ct.default_dim)
|
||||
error = {ct.err_code: 0, ct.err_msg: "Must be have a primary key field"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
||||
self.collection_schema_wrap.init_collection_schema([int_fields, vec_fields],
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@ -462,7 +467,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
self._connect()
|
||||
fields = [cf.gen_int64_field(is_primary=False), cf.gen_float_field(is_primary=False),
|
||||
cf.gen_float_vec_field(is_primary=False)]
|
||||
error = {ct.err_code: 0, ct.err_msg: "Must be have a primary key field"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
||||
self.collection_schema_wrap.init_collection_schema(fields, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@ -489,7 +494,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
"""
|
||||
self._connect()
|
||||
fields = [cf.gen_int64_field(), cf.gen_float_vec_field()]
|
||||
error = {ct.err_code: 0, ct.err_msg: "Must be have a primary key field"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
||||
self.collection_schema_wrap.init_collection_schema(fields=fields, primary_field=primary_field,
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@ -503,7 +508,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
"""
|
||||
self._connect()
|
||||
fields = [cf.gen_int64_field(), cf.gen_float_vec_field()]
|
||||
error = {ct.err_code: 0, ct.err_msg: "Must be have a primary key field"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
||||
self.collection_schema_wrap.init_collection_schema(fields, primary_field=primary_field,
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@ -517,7 +522,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
self._connect()
|
||||
fake_field = cf.gen_unique_str()
|
||||
fields = [cf.gen_int64_field(), cf.gen_float_vec_field()]
|
||||
error = {ct.err_code: 0, ct.err_msg: "Must be have a primary key field"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
||||
|
||||
self.collection_schema_wrap.init_collection_schema(fields, primary_field=fake_field,
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
@ -549,6 +554,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
assert self.collection_wrap.primary_field.name == ct.default_int64_field_name
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.xfail(reason="exception not MilvusException")
|
||||
def test_collection_unsupported_primary_field(self, get_unsupported_primary_field):
|
||||
"""
|
||||
target: test collection with unsupported primary field type
|
||||
@ -753,10 +759,11 @@ class TestCollectionParams(TestcaseBase):
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
float_vec_field, _ = self.field_schema_wrap.init_field_schema(name="vec", dtype=dtype)
|
||||
schema = cf.gen_collection_schema(fields=[cf.gen_int64_field(is_primary=True), float_vec_field])
|
||||
error = {ct.err_code: 0, ct.err_msg: "dimension is not defined in field type params"}
|
||||
error = {ct.err_code: 1, ct.err_msg: "dimension is not defined in field type params"}
|
||||
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.xfail(reason="exception not MilvusException")
|
||||
def test_collection_vector_invalid_dim(self, get_invalid_dim):
|
||||
"""
|
||||
target: test collection with invalid dimension
|
||||
@ -767,7 +774,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
float_vec_field = cf.gen_float_vec_field(dim=get_invalid_dim)
|
||||
schema = cf.gen_collection_schema(fields=[cf.gen_int64_field(is_primary=True), float_vec_field])
|
||||
error = {ct.err_code: 0, ct.err_msg: f'invalid dim: {get_invalid_dim}'}
|
||||
error = {ct.err_code: 1, ct.err_msg: f'invalid dim: {get_invalid_dim}'}
|
||||
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@ -782,7 +789,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
float_vec_field = cf.gen_float_vec_field(dim=dim)
|
||||
schema = cf.gen_collection_schema(fields=[cf.gen_int64_field(is_primary=True), float_vec_field])
|
||||
error = {ct.err_code: 0, ct.err_msg: "invalid dimension: {}. should be in range 1 ~ 32768".format(dim)}
|
||||
error = {ct.err_code: 1, ct.err_msg: "invalid dimension: {}. should be in range 1 ~ 32768".format(dim)}
|
||||
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@ -815,6 +822,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
check_items={exp_name: c_name, exp_schema: schema})
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.xfail(reason="exception not MilvusException")
|
||||
def test_collection_none_desc(self):
|
||||
"""
|
||||
target: test collection with none description
|
||||
@ -824,7 +832,7 @@ class TestCollectionParams(TestcaseBase):
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
schema = cf.gen_default_collection_schema(description=None)
|
||||
error = {ct.err_code: 0, ct.err_msg: "expected one of: bytes, unicode"}
|
||||
error = {ct.err_code: 1, ct.err_msg: "None has type NoneType, but expected one of: bytes, unicode"}
|
||||
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@ -918,7 +926,7 @@ class TestCollectionOperation(TestcaseBase):
|
||||
check_items={exp_name: c_name, exp_schema: default_schema})
|
||||
self.collection_wrap.drop()
|
||||
assert not self.utility_wrap.has_collection(c_name)[0]
|
||||
error = {ct.err_code: 0, ct.err_msg: "can't find collection"}
|
||||
error = {ct.err_code: 1, ct.err_msg: f'HasPartition failed: can\'t find collection: {c_name}'}
|
||||
collection_w.has_partition("p", check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@ -991,7 +999,7 @@ class TestCollectionDataframe(TestcaseBase):
|
||||
"""
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
error = {ct.err_code: 0, ct.err_msg: "Dataframe can not be None!"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Dataframe can not be None."}
|
||||
self.collection_wrap.construct_from_dataframe(c_name, None, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@ -1033,7 +1041,7 @@ class TestCollectionDataframe(TestcaseBase):
|
||||
"""
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
error = {ct.err_code: 0, ct.err_msg: "Data type must be pandas.DataFrame!"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Data type must be pandas.DataFrame."}
|
||||
df = get_non_df
|
||||
self.collection_wrap.construct_from_dataframe(c_name, df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@ -1047,7 +1055,7 @@ class TestCollectionDataframe(TestcaseBase):
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
df = pd.DataFrame({"date": pd.date_range('20210101', periods=3), ct.default_int64_field_name: [1, 2, 3]})
|
||||
error = {ct.err_code: 0, ct.err_msg: "Cannot infer schema from dataframe"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Cannot infer schema from empty dataframe."}
|
||||
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@ -1075,7 +1083,7 @@ class TestCollectionDataframe(TestcaseBase):
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
df = cf.gen_default_dataframe_data(ct.default_nb)
|
||||
error = {ct.err_code: 0, ct.err_msg: "Schema must have a primary key field!"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Schema must have a primary key field."}
|
||||
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=None,
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@ -1089,7 +1097,7 @@ class TestCollectionDataframe(TestcaseBase):
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
df = cf.gen_default_dataframe_data(ct.default_nb)
|
||||
error = {ct.err_code: 0, ct.err_msg: "Must be have a primary key field"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
||||
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=c_name,
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@ -1117,7 +1125,7 @@ class TestCollectionDataframe(TestcaseBase):
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
df = cf.gen_default_dataframe_data(nb=100)
|
||||
error = {ct.err_code: 0, ct.err_msg: "Auto_id is True, but get the data of primary key field"}
|
||||
error = {ct.err_code: 0, ct.err_msg: "Auto_id is True, primary field should not have data."}
|
||||
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
|
||||
auto_id=True, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
|
||||
@ -289,7 +289,7 @@ class TestInsertParams(TestcaseBase):
|
||||
float_values = [np.float32(i) for i in range(nb)]
|
||||
float_vec_values = cf.gen_vectors(nb, ct.default_dim)
|
||||
data = [int_values, float_values, float_vec_values]
|
||||
error = {ct.err_code: 1, ct.err_msg: 'arrays must all be same length'}
|
||||
error = {ct.err_code: 0, ct.err_msg: 'Arrays must all be same length.'}
|
||||
collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@ -306,7 +306,7 @@ class TestInsertParams(TestcaseBase):
|
||||
float_values = [np.float32(i) for i in range(nb)]
|
||||
float_vec_values = cf.gen_vectors(nb - 1, ct.default_dim)
|
||||
data = [int_values, float_values, float_vec_values]
|
||||
error = {ct.err_code: 1, ct.err_msg: 'arrays must all be same length'}
|
||||
error = {ct.err_code: 0, ct.err_msg: 'Arrays must all be same length.'}
|
||||
collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@ -321,7 +321,7 @@ class TestInsertParams(TestcaseBase):
|
||||
df = cf.gen_default_dataframe_data(ct.default_nb)
|
||||
new_values = [i for i in range(ct.default_nb)]
|
||||
df.insert(3, 'new', new_values)
|
||||
error = {ct.err_code: 1, ct.err_msg: 'Column cnt not match with schema'}
|
||||
error = {ct.err_code: 0, ct.err_msg: 'The data fields number is not match with schema.'}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@ -335,7 +335,7 @@ class TestInsertParams(TestcaseBase):
|
||||
collection_w = self.init_collection_wrap(name=c_name)
|
||||
df = cf.gen_default_dataframe_data(ct.default_nb)
|
||||
df.drop(ct.default_float_vec_field_name, axis=1, inplace=True)
|
||||
error = {ct.err_code: 1, ct.err_msg: 'Column cnt not match with schema'}
|
||||
error = {ct.err_code: 0, ct.err_msg: 'The data fields number is not match with schema.'}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
|
||||
@ -109,7 +109,6 @@ class TestQueryBase(TestcaseBase):
|
||||
collection_w.query(expr, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.xfail(reason="#6046")
|
||||
@pytest.mark.parametrize("expr", ["12-s", "中文", "a", " "])
|
||||
def test_query_expr_invalid_string(self, expr):
|
||||
"""
|
||||
@ -118,7 +117,7 @@ class TestQueryBase(TestcaseBase):
|
||||
expected: raise exception
|
||||
"""
|
||||
collection_w, vectors, _, = self.init_collection_general(prefix, insert_data=True)
|
||||
error = {ct.err_code: 1, ct.err_msg: "invalid expr"}
|
||||
error = {ct.err_code: 1, ct.err_msg: "Invalid expression!"}
|
||||
collection_w.query(expr, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@ -298,7 +297,6 @@ class TestQueryBase(TestcaseBase):
|
||||
assert set(res_1[0].keys()) == set(fields)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.xfail(reason="issue #6143")
|
||||
@pytest.mark.parametrize("output_fields", [[ct.default_float_vec_field_name],
|
||||
[ct.default_int64_field_name, ct.default_float_vec_field_name]])
|
||||
def test_query_output_vec_field(self, output_fields):
|
||||
@ -308,7 +306,7 @@ class TestQueryBase(TestcaseBase):
|
||||
expected: raise exception
|
||||
"""
|
||||
collection_w, vectors, _, = self.init_collection_general(prefix, insert_data=True)
|
||||
error = {ct.err_code: 1, ct.err_msg: "unsupported leaf node"}
|
||||
error = {ct.err_code: 1, ct.err_msg: "Query does not support vector field currently"}
|
||||
collection_w.query(default_term_expr, output_fields=output_fields,
|
||||
check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user