test: add HNSW_SQ test cases (#46428)

/kind improvement
/assign @yanliang567

Signed-off-by: zilliz <jiaming.li@zilliz.com>
This commit is contained in:
jiamingli-maker 2025-12-22 11:29:18 +08:00 committed by GitHub
parent 89a002e12a
commit b9fe8e9f9e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 685 additions and 0 deletions

View File

@ -0,0 +1,413 @@
from pymilvus import DataType
success = "success"
class HNSW_SQ:
supported_vector_types = [
DataType.FLOAT_VECTOR,
DataType.FLOAT16_VECTOR,
DataType.BFLOAT16_VECTOR,
DataType.INT8_VECTOR
]
supported_metrics = ['L2', 'IP', 'COSINE']
build_params = [
# M params test
{
"description": "Minimum Boundary Test",
"params": {"M": 2},
"expected": success
},
{
"description": "Maximum Boundary Test",
"params": {"M": 2048},
"expected": success
},
{
"description": "Out of Range Test - Negative",
"params": {"M": -1},
"expected": {"err_code": 1100, "err_msg": "param 'M' (-1) should be in range [2, 2048]"}
},
{
"description": "Out of Range Test - Too Large",
"params": {"M": 2049},
"expected": {"err_code": 1100, "err_msg": "param 'M' (2049) should be in range [2, 2048]"}
},
{
"description": "String Type Test will ignore the wrong type",
"params": {"M": "16"},
"expected": success
},
{
"description": "Float Type Test",
"params": {"M": 16.0},
"expected": {"err_code": 1100, "err_msg": "wrong data type in json"}
},
{
"description": "Boolean Type Test",
"params": {"M": True},
"expected": {"err_code": 1100, "err_msg": "invalid integer value, key: 'M', value: 'True': invalid parameter"}
},
{
"description": "None Type Test, use default value",
"params": {"M": None},
"expected": success
},
{
"description": "List Type Test",
"params": {"M": [16]},
"expected": {"err_code": 1100, "err_msg": "invalid integer value, key: 'M', value: '[16]': invalid parameter"}
},
{
"description": "Nested dict in params",
"params": {"M": {"value": 16}},
"expected": {"err_code": 1100, "err_msg": "invalid integer value"}
},
# efConstruction params test
{
"description": "Minimum Boundary Test",
"params": {"efConstruction": 1},
"expected": success
},
{
"description": "Large Value Test",
"params": {"efConstruction": 10000},
"expected": success
},
{
"description": "Out of Range Test - Negative",
"params": {"efConstruction": -1},
"expected": {"err_code": 1100, "err_msg": "param 'efConstruction' (-1) should be in range [1, 2147483647]"}
},
{
"description": "String Type Test will ignore the wrong type",
"params": {"efConstruction": "100"},
"expected": success
},
{
"description": "Float Type Test",
"params": {"efConstruction": 100.0},
"expected": {"err_code": 1100, "err_msg": "wrong data type in json"}
},
{
"description": "Boolean Type Test",
"params": {"efConstruction": True},
"expected": {"err_code": 1100, "err_msg": "invalid integer value, key: 'efConstruction', value: 'True': invalid parameter"}
},
{
"description": "None Type Test, use default value",
"params": {"efConstruction": None},
"expected": success
},
{
"description": "List Type Test",
"params": {"efConstruction": [100]},
"expected": {"err_code": 1100, "err_msg": "invalid integer value, key: 'efConstruction', value: '[100]': invalid parameter"}
},
# sq_type params test
{
"description": "Valid sq_type - SQ6",
"params": {"sq_type": "SQ6"},
"expected": success
},
{
"description": "Valid sq_type - SQ8",
"params": {"sq_type": "SQ8"},
"expected": success
},
{
"description": "Valid sq_type - BF16",
"params": {"sq_type": "BF16"},
"expected": success
},
{
"description": "Valid sq_type - FP16",
"params": {"sq_type": "FP16"},
"expected": success
},
{
"description": "Out of Range Test - Unknown String",
"params": {"sq_type": "FP32"},
"expected": {"err_code": 1100, "err_msg": "invalid scalar quantizer type: invalid parameter"}
},
{
"description": "Integer Type Test",
"params": {"sq_type": 8},
"expected": {"err_code": 1100, "err_msg": "invalid scalar quantizer type: invalid parameter"}
},
{
"description": "Float Type Test",
"params": {"sq_type": 8.0},
"expected": {"err_code": 1100, "err_msg": "invalid scalar quantizer type: invalid parameter"}
},
{
"description": "Boolean Type Test",
"params": {"sq_type": True},
"expected": {"err_code": 1100, "err_msg": "invalid scalar quantizer type: invalid parameter"}
},
{
"description": "None Type Test, use default value",
"params": {"sq_type": None},
"expected": success
},
{
"description": "List Type Test",
"params": {"sq_type": ["SQ8"]},
"expected": {"err_code": 1100, "err_msg": "invalid scalar quantizer type: invalid parameter"}
},
# refine params test
{
"description": "refine = True",
"params": {"refine": True},
"expected": success
},
{
"description": "String Type Test",
"params": {"refine": "true"},
"expected": success
},
{
"description": "String Type Test",
"params": {"refine": "test"},
"expected": {"err_code": 1100, "err_msg": "should be a boolean: invalid parameter"}
},
{
"description": "Integer Type Test",
"params": {"refine": 1},
"expected": {"err_code": 1100, "err_msg": "should be a boolean: invalid parameter"}
},
{
"description": "Float Type Test",
"params": {"refine": 1.0},
"expected": {"err_code": 1100, "err_msg": "should be a boolean: invalid parameter"}
},
{
"description": "List Type Test",
"params": {"refine": [True]},
"expected": {"err_code": 1100, "err_msg": "should be a boolean: invalid parameter"}
},
{
"description": "None Type Test, use default value",
"params": {"refine": None},
"expected": success
},
# refine_type params test
{
"description": "Valid refine_type - SQ6",
"params": {"refine_type": "SQ6"},
"expected": success
},
{
"description": "Valid refine_type - SQ8",
"params": {"refine_type": "SQ8"},
"expected": success
},
{
"description": "Valid refine_type - BF16",
"params": {"refine_type": "BF16"},
"expected": success
},
{
"description": "Valid refine_type - FP16",
"params": {"refine_type": "FP16"},
"expected": success
},
{
"description": "Valid refine_type - FP32",
"params": {"refine_type": "FP32"},
"expected": success
},
{
"description": "Out of Range Test - unknown value",
"params": {"refine_type": "INT8"},
"expected": {"err_code": 1100, "err_msg": "invalid refine type : INT8, optional types are [sq6, sq8, fp16, bf16, fp32, flat]: invalid parameter"}
},
{
"description": "Integer Type Test",
"params": {"refine_type": 1},
"expected": {"err_code": 1100, "err_msg": "invalid refine type : 1, optional types are [sq6, sq8, fp16, bf16, fp32, flat]: invalid parameter"}
},
{
"description": "Float Type Test",
"params": {"refine_type": 1.0},
"expected": {"err_code": 1100, "err_msg": "invalid refine type : 1.0, optional types are [sq6, sq8, fp16, bf16, fp32, flat]: invalid parameter"}
},
{
"description": "List Type Test",
"params": {"refine_type": ["FP16"]},
"expected": {"err_code": 1100, "err_msg": "['FP16'], optional types are [sq6, sq8, fp16, bf16, fp32, flat]: invalid parameter"}
},
{
"description": "None Type Test, use default value",
"params": {"refine_type": None},
"expected": success
},
# combination params test
{
"description": "empty dict params",
"params": {},
"expected": success
},
{
"description": "All optional parameters None",
"params": {"M": None, "efConstruction": None, "sq_type": None, "refine": None, "refine_type": None},
"expected": success
},
{
"description": "Typical valid combination",
"params": {"M": 16, "efConstruction": 200, "sq_type": "SQ8", "refine": True, "refine_type": "FP16"},
"expected": success
},
{
"description": "Minimum boundary combination",
"params": {"M": 2, "efConstruction": 1, "sq_type": "SQ6"},
"expected": success
},
{
"description": "Maximum boundary combination",
"params": {"M": 2048, "efConstruction": 10000, "sq_type": "FP16", "refine": True, "refine_type": "FP32"},
"expected": success
},
{
"description": "Unknown extra parameter in combination",
"params": {"M": 16, "efConstruction": 200, "sq_type": "SQ8", "refine": True, "refine_type": "FP16", "unknown_param": "nothing"},
"expected": success
},
{
"description": "Partial parameters set (M + sq_type only)",
"params": {"M": 32, "sq_type": "BF16"},
"expected": success
},
{
"description": "Partial parameters set (efConstruction + refine only)",
"params": {"efConstruction": 500,"refine": True},
"expected": success
},
{
"description": "Invalid refine_type using vector data type",
"params": {"sq_type": "SQ8", "refine": True, "refine_type": "INT8"},
"expected": {"err_code": 1100, "err_msg": "invalid refine type"}
}
]
search_params = [
# ef params test
{
"description": "Boundary Test - ef equals k",
"params": {"ef": 10},
"expected": success
},
{
"description": "Minimum Boundary Test",
"params": {"ef": 1},
"expected": {"err_code": 65535, "err_msg": "ef(1) should be larger than k(10)"} # assume default limit=10
},
{
"description": "Large Value Test",
"params": {"ef": 10000},
"expected": success
},
{
"description": "Out of Range Test - Negative",
"params": {"ef": -1},
"expected": {"err_code": 65535, "err_msg": "param 'ef' (-1) should be in range [1, 2147483647]"}
},
{
"description": "String Type Test, not check data type",
"params": {"ef": "32"},
"expected": success
},
{
"description": "Float Type Test",
"params": {"ef": 32.0},
"expected": {"err_code": 65535, "err_msg": "Type conflict in json: param 'ef' (32.0) should be integer"}
},
{
"description": "Boolean Type Test",
"params": {"ef": True},
"expected": {"err_code": 65535, "err_msg": "Type conflict in json: param 'ef' (true) should be integer"}
},
{
"description": "None Type Test",
"params": {"ef": None},
"expected": {"err_code": 65535, "err_msg": "Type conflict in json: param 'ef' (null) should be integer"}
},
{
"description": "List Type Test",
"params": {"ef": [32]},
"expected": {"err_code": 65535, "err_msg": "param 'ef' ([32]) should be integer"}
},
# refine_k params test
{
"description": "refine_k default boundary",
"params": {"refine_k": 1},
"expected": success
},
{
"description": "refine_k valid float",
"params": {"refine_k": 2.5},
"expected": success
},
{
"description": "refine_k out of range",
"params": {"refine_k": 0},
"expected": {"err_code": 65535, "err_msg": "Out of range in json"}
},
{
"description": "refine_k integer type",
"params": {"refine_k": 20},
"expected": success
},
{
"description": "String Type Test, not check data type",
"params": {"refine_k": "2.5"},
"expected": success
},
{
"description": "empty string type",
"params": {"refine_k": ""},
"expected": {"err_code": 65535, "err_msg": "invalid float value"}
},
{
"description": "refine_k boolean type",
"params": {"refine_k": True},
"expected": {"err_code": 65535, "err_msg": "Type conflict in json: param 'refine_k' (true) should be a number"}
},
{
"description": "None Type Test",
"params": {"refine_k": None},
"expected": {"err_code": 65535, "err_msg": "Type conflict in json"}
},
{
"description": "List Type Test",
"params": {"refine_k": [15]},
"expected": {"err_code": 65535, "err_msg":"Type conflict in json"}
},
# combination params test
{
"description": "HNSW ef + SQ refine_k combination",
"params": {"ef": 64, "refine_k": 2},
"expected": success
},
{
"description": "Valid ef with invalid refine_k",
"params": {"ef": 64, "refine_k": 0},
"expected": {"err_code": 65535, "err_msg":"Out of range in json"}
},
{
"description": "empty dict params",
"params": {},
"expected": success
},
]

View File

@ -0,0 +1,272 @@
import logging
from utils.util_pymilvus import *
from common.common_type import CaseLabel, CheckTasks
from common import common_type as ct
from common import common_func as cf
from base.client_v2_base import TestMilvusClientV2Base
import pytest
from idx_hnsw_sq import HNSW_SQ
index_type = "HNSW_SQ"
success = "success"
pk_field_name = 'id'
vector_field_name = 'vector'
dim = ct.default_dim
default_nb = 2000
default_build_params = {"M": 16, "efConstruction": 200, "sq_type": "SQ8"}
default_search_params = {"ef": 64, "refine_k": 1}
class TestHnswSQBuildParams(TestMilvusClientV2Base):
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("params", HNSW_SQ.build_params)
def test_hnsw_sq_build_params(self, params):
"""
Test the build params of HNSW_SQ index
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
schema, _ = self.create_schema(client)
schema.add_field(pk_field_name, datatype=DataType.INT64, is_primary=True, auto_id=False)
schema.add_field(vector_field_name, datatype=DataType.FLOAT_VECTOR, dim=dim)
self.create_collection(client, collection_name, schema=schema)
# Insert data in 2 batches with unique primary keys
insert_times = 2
random_vectors = list(cf.gen_vectors(default_nb * insert_times, dim, vector_data_type=DataType.FLOAT_VECTOR))
for j in range(insert_times):
start_pk = j * default_nb
rows = [{
pk_field_name: i + start_pk,
vector_field_name: random_vectors[i + start_pk]
} for i in range(default_nb)]
self.insert(client, collection_name, rows)
self.flush(client, collection_name)
# create index
build_params = params.get("params", None)
index_params = self.prepare_index_params(client)[0]
index_params.add_index(field_name=vector_field_name,
metric_type=cf.get_default_metric_for_vector_type(vector_type=DataType.FLOAT_VECTOR),
index_type=index_type,
params=build_params)
# build index
if params.get("expected", None) != success:
self.create_index(client, collection_name, index_params,
check_task=CheckTasks.err_res,
check_items=params.get("expected"))
else:
self.create_index(client, collection_name, index_params)
self.wait_for_index_ready(client, collection_name, index_name=vector_field_name)
# load collection
self.load_collection(client, collection_name)
# search
nq = 2
search_vectors = cf.gen_vectors(nq, dim=dim, vector_data_type=DataType.FLOAT_VECTOR)
self.search(client, collection_name, search_vectors,
search_params=default_search_params,
limit=ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": nq,
"limit": ct.default_limit,
"pk_name": pk_field_name})
# verify the index params are persisted
idx_info = client.describe_index(collection_name, vector_field_name)
if build_params is not None:
for key, value in build_params.items():
if value is not None:
assert key in idx_info.keys()
assert str(value) in idx_info.values()
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.parametrize("vector_data_type", ct.all_vector_types)
def test_hnsw_sq_on_all_vector_types(self, vector_data_type):
"""
Test HNSW_SQ index on all the vector types and metrics
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
schema, _ = self.create_schema(client)
schema.add_field(pk_field_name, datatype=DataType.INT64, is_primary=True, auto_id=False)
if vector_data_type == DataType.SPARSE_FLOAT_VECTOR:
schema.add_field(vector_field_name, datatype=vector_data_type)
else:
schema.add_field(vector_field_name, datatype=vector_data_type, dim=dim)
self.create_collection(client, collection_name, schema=schema)
# Insert data in 2 batches with unique primary keys
insert_times = 2
random_vectors = list(cf.gen_vectors(default_nb*insert_times, dim, vector_data_type=vector_data_type)) \
if vector_data_type == DataType.FLOAT_VECTOR \
else cf.gen_vectors(default_nb*insert_times, dim, vector_data_type=vector_data_type)
for j in range(insert_times):
start_pk = j * default_nb
rows = [{
pk_field_name: i + start_pk,
vector_field_name: random_vectors[i + start_pk]
} for i in range(default_nb)]
self.insert(client, collection_name, rows)
self.flush(client, collection_name)
# create index
index_params = self.prepare_index_params(client)[0]
metric_type = cf.get_default_metric_for_vector_type(vector_data_type)
index_params.add_index(field_name=vector_field_name,
metric_type=metric_type,
index_type=index_type,
params=default_build_params)
if vector_data_type not in HNSW_SQ.supported_vector_types:
self.create_index(client, collection_name, index_params,
check_task=CheckTasks.err_res,
check_items={"err_code": 999,
"err_msg": f"can't build with this index HNSW_SQ: invalid parameter"})
else:
self.create_index(client, collection_name, index_params)
self.wait_for_index_ready(client, collection_name, index_name=vector_field_name)
# load collection
self.load_collection(client, collection_name)
# search
nq = 2
search_vectors = cf.gen_vectors(nq, dim=dim, vector_data_type=vector_data_type)
self.search(client, collection_name, search_vectors,
search_params=default_search_params,
limit=ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": nq,
"limit": ct.default_limit,
"pk_name": pk_field_name})
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.parametrize("metric", HNSW_SQ.supported_metrics)
def test_hnsw_sq_on_all_metrics(self, metric):
"""
Test the search params of HNSW_SQ index
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
schema, _ = self.create_schema(client)
schema.add_field(pk_field_name, datatype=DataType.INT64, is_primary=True, auto_id=False)
schema.add_field(vector_field_name, datatype=DataType.FLOAT_VECTOR, dim=dim)
self.create_collection(client, collection_name, schema=schema)
# insert data
insert_times = 2
random_vectors = list(cf.gen_vectors(default_nb*insert_times, dim, vector_data_type=DataType.FLOAT_VECTOR))
for j in range(insert_times):
start_pk = j * default_nb
rows = [{
pk_field_name: i + start_pk,
vector_field_name: random_vectors[i + start_pk]
} for i in range(default_nb)]
self.insert(client, collection_name, rows)
self.flush(client, collection_name)
# create index
index_params = self.prepare_index_params(client)[0]
index_params.add_index(field_name=vector_field_name,
metric_type=metric,
index_type=index_type,
params=default_build_params)
self.create_index(client, collection_name, index_params)
self.wait_for_index_ready(client, collection_name, index_name=vector_field_name)
# load collection
self.load_collection(client, collection_name)
# search
nq = 2
search_vectors = cf.gen_vectors(nq, dim=dim, vector_data_type=DataType.FLOAT_VECTOR)
self.search(client, collection_name, search_vectors,
search_params=default_search_params,
limit=ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": nq,
"limit": ct.default_limit,
"pk_name": pk_field_name})
@pytest.mark.xdist_group("TestHnswSQSearchParams")
class TestHnswSQSearchParams(TestMilvusClientV2Base):
"""Test search with pagination functionality for HNSW_SQ index"""
def setup_class(self):
super().setup_class(self)
self.collection_name = "TestHnswSQSearchParams" + cf.gen_unique_str("_")
self.float_vector_field_name = vector_field_name
self.float_vector_dim = dim
self.primary_keys = []
self.enable_dynamic_field = False
self.datas = []
@pytest.fixture(scope="class", autouse=True)
def prepare_collection(self, request):
"""
Initialize collection before test class runs
"""
client = self._client()
collection_schema = self.create_schema(client)[0]
collection_schema.add_field(pk_field_name, DataType.INT64, is_primary=True, auto_id=False)
collection_schema.add_field(self.float_vector_field_name, DataType.FLOAT_VECTOR, dim=128)
self.create_collection(client, self.collection_name, schema=collection_schema,
enable_dynamic_field=self.enable_dynamic_field, force_teardown=False)
insert_times = 2
float_vectors = cf.gen_vectors(default_nb * insert_times, dim=self.float_vector_dim,
vector_data_type=DataType.FLOAT_VECTOR)
for j in range(insert_times):
rows = []
for i in range(default_nb):
pk = i + j * default_nb
row = {
pk_field_name: pk,
self.float_vector_field_name: list(float_vectors[pk])
}
self.datas.append(row)
rows.append(row)
self.insert(client, self.collection_name, data=rows)
self.primary_keys.extend([i + j * default_nb for i in range(default_nb)])
self.flush(client, self.collection_name)
# Create HNSW_SQ index
index_params = self.prepare_index_params(client)[0]
index_params.add_index(field_name=self.float_vector_field_name,
metric_type="COSINE",
index_type=index_type,
params=default_build_params)
self.create_index(client, self.collection_name, index_params=index_params)
self.wait_for_index_ready(client, self.collection_name, index_name=self.float_vector_field_name)
self.load_collection(client, self.collection_name)
def teardown():
self.drop_collection(self._client(), self.collection_name)
request.addfinalizer(teardown)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("params", HNSW_SQ.search_params)
def test_hnsw_sq_search_params(self, params):
"""
Test the search params of HNSW_SQ index
"""
client = self._client()
collection_name = self.collection_name
nq = 2
search_vectors = cf.gen_vectors(nq, dim=self.float_vector_dim, vector_data_type=DataType.FLOAT_VECTOR)
search_params = params.get("params", None)
if params.get("expected", None) != success:
self.search(client, collection_name, search_vectors,
search_params=search_params,
limit=ct.default_limit,
check_task=CheckTasks.err_res,
check_items=params.get("expected"))
else:
self.search(client, collection_name, search_vectors,
search_params=search_params,
limit=ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": nq,
"limit": ct.default_limit,
"pk_name": pk_field_name})