Add test for numpy files in diff folders (#17175)

Signed-off-by: yanliang567 <yanliang.qiao@zilliz.com>
This commit is contained in:
yanliang567 2022-05-24 10:47:58 +08:00 committed by GitHub
parent ea8e1623cd
commit 8dc43fa811
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -847,11 +847,10 @@ class TestBulkLoad(TestcaseBase):
"limit": 1}) "limit": 1})
@pytest.mark.tags(CaseLabel.L3) @pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True]) @pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [6]) @pytest.mark.parametrize("dim", [6])
@pytest.mark.parametrize("entities", [10]) @pytest.mark.parametrize("entities", [1000])
@pytest.mark.parametrize("file_nums", [2]) # 32, max task nums 32? need improve @pytest.mark.parametrize("file_nums", [10])
@pytest.mark.xfail(reason="only one numpy file imported successfully, issue #16992")
def test_multi_numpy_files_from_diff_folders(self, auto_id, dim, entities, file_nums): def test_multi_numpy_files_from_diff_folders(self, auto_id, dim, entities, file_nums):
""" """
collection schema 1: [pk, float_vector] collection schema 1: [pk, float_vector]
@ -859,18 +858,10 @@ class TestBulkLoad(TestcaseBase):
Steps: Steps:
1. create collection 1. create collection
2. import data 2. import data
3. if row_based: verify import failed 3. verify that import numpy files in a loop
4. if column_based:
4.1 verify the data entities equal the import data
4.2 verify search and query successfully
""" """
row_based = False # numpy files supports only column based row_based = False # numpy files supports only column based
data_fields = [df.vec_field]
if not auto_id:
data_fields.append(df.pk_field)
files = prepare_bulk_load_numpy_files(rows=entities, dim=dim,
data_fields=data_fields,
file_nums=file_nums, force=True)
self._connect() self._connect()
c_name = cf.gen_unique_str() c_name = cf.gen_unique_str()
fields = [cf.gen_int64_field(name=df.pk_field, is_primary=True), fields = [cf.gen_int64_field(name=df.pk_field, is_primary=True),
@ -882,7 +873,14 @@ class TestBulkLoad(TestcaseBase):
self.collection_wrap.create_index(field_name=df.vec_field, index_params=index_params) self.collection_wrap.create_index(field_name=df.vec_field, index_params=index_params)
# load collection # load collection
self.collection_wrap.load() self.collection_wrap.load()
t0 = time.time()
data_fields = [df.vec_field]
if not auto_id:
data_fields.append(df.pk_field)
for i in range(file_nums):
files = prepare_bulk_load_numpy_files(rows=entities, dim=dim,
data_fields=data_fields,
file_nums=1, force=True)
task_ids, _ = self.utility_wrap.bulk_load(collection_name=c_name, task_ids, _ = self.utility_wrap.bulk_load(collection_name=c_name,
row_based=row_based, row_based=row_based,
files=files) files=files)
@ -890,8 +888,7 @@ class TestBulkLoad(TestcaseBase):
wait_for_bulk_load_tasks_completed(task_ids=task_ids, wait_for_bulk_load_tasks_completed(task_ids=task_ids,
target_state=BulkLoadStates.BulkLoadPersisted, target_state=BulkLoadStates.BulkLoadPersisted,
timeout=30) timeout=30)
tt = time.time() - t0 log.info(f"bulk load state:{success}")
log.info(f"bulk load state:{success} in {tt}")
assert success assert success
log.info(f" collection entities: {self.collection_wrap.num_entities}") log.info(f" collection entities: {self.collection_wrap.num_entities}")
@ -1734,6 +1731,51 @@ class TestBulkLoadInvalidParams(TestcaseBase):
# res, _ = self.collection_wrap.query(expr=f"{float_field} in [1.0]", output_fields=[float_field]) # res, _ = self.collection_wrap.query(expr=f"{float_field} in [1.0]", output_fields=[float_field])
# assert res[0].get(float_field, 0) == 1.0 # assert res[0].get(float_field, 0) == 1.0
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True, False])
@pytest.mark.parametrize("dim", [6])
@pytest.mark.parametrize("entities", [10])
@pytest.mark.parametrize("file_nums", [2])
def test_multi_numpy_files_from_diff_folders_in_one_request(self, auto_id, dim, entities, file_nums):
"""
collection schema 1: [pk, float_vector]
data file: .npy files in different folders
Steps:
1. create collection
2. import data
3. fail to import data with errors
"""
row_based = False # numpy files supports only column based
data_fields = [df.vec_field]
if not auto_id:
data_fields.append(df.pk_field)
files = prepare_bulk_load_numpy_files(rows=entities, dim=dim,
data_fields=data_fields,
file_nums=file_nums, force=True)
self._connect()
c_name = cf.gen_unique_str()
fields = [cf.gen_int64_field(name=df.pk_field, is_primary=True),
cf.gen_float_vec_field(name=df.vec_field, dim=dim)]
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id)
self.collection_wrap.init_collection(c_name, schema=schema)
t0 = time.time()
task_ids, _ = self.utility_wrap.bulk_load(collection_name=c_name,
row_based=row_based,
files=files)
success, states = self.utility_wrap. \
wait_for_bulk_load_tasks_completed(task_ids=task_ids,
target_state=BulkLoadStates.BulkLoadPersisted,
timeout=30)
tt = time.time() - t0
log.info(f"bulk load state:{success} in {tt}")
assert not success
failed_reason = "duplicate file"
for state in states.values():
assert state.state_name == "BulkLoadFailed"
assert failed_reason in state.infos.get("failed_reason", "")
assert self.collection_wrap.num_entities == 0
# TODO: string data on float field # TODO: string data on float field
@ -1811,5 +1853,3 @@ class TestBulkLoadAdvanced(TestcaseBase):
# self.collection_wrap.query(expr=f"id in {ids}") # self.collection_wrap.query(expr=f"id in {ids}")
"""Validate data consistency and availability during import""" """Validate data consistency and availability during import"""