enhance: Deduplicate primary keys in upsert request batch (#45249)

issue: #44320

This change adds deduplication logic to handle duplicate primary keys
within a single upsert batch, keeping the last occurrence of each
primary key.

Key changes:
- Add DeduplicateFieldData function to remove duplicate PKs from field
data, supporting both Int64 and VarChar primary keys
- Refactor fillFieldPropertiesBySchema into two separate functions:
validateFieldDataColumns for validation and fillFieldPropertiesOnly for
property filling, improving code clarity and reusability
- Integrate deduplication logic in upsertTask.PreExecute to
automatically deduplicate data before processing
- Add comprehensive unit tests for deduplication with various PK types
(Int64, VarChar) and field types (scalar, vector)
- Add Python integration tests to verify end-to-end behavior

---------

Signed-off-by: Wei Liu <wei.liu@zilliz.com>
This commit is contained in:
wei liu 2025-11-17 21:35:40 +08:00 committed by GitHub
parent e9506f1d64
commit 7aed88113c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 911 additions and 62 deletions

View File

@ -235,11 +235,15 @@ func (it *insertTask) PreExecute(ctx context.Context) error {
return err
}
// set field ID to insert field data
err = fillFieldPropertiesBySchema(it.insertMsg.GetFieldsData(), schema.CollectionSchema)
// Validate and set field ID to insert field data
err = validateFieldDataColumns(it.insertMsg.GetFieldsData(), schema)
if err != nil {
log.Info("set fieldID to fieldData failed",
zap.Error(err))
log.Info("validate field data columns failed", zap.Error(err))
return err
}
err = fillFieldPropertiesOnly(it.insertMsg.GetFieldsData(), schema)
if err != nil {
log.Info("fill field properties failed", zap.Error(err))
return err
}

View File

@ -899,11 +899,15 @@ func (it *upsertTask) insertPreExecute(ctx context.Context) error {
return err
}
// set field ID to insert field data
err = fillFieldPropertiesBySchema(it.upsertMsg.InsertMsg.GetFieldsData(), it.schema.CollectionSchema)
// Validate and set field ID to insert field data
err = validateFieldDataColumns(it.upsertMsg.InsertMsg.GetFieldsData(), it.schema)
if err != nil {
log.Warn("insert set fieldID to fieldData failed when upsert",
zap.Error(err))
log.Warn("validate field data columns failed when upsert", zap.Error(err))
return merr.WrapErrAsInputErrorWhen(err, merr.ErrParameterInvalid)
}
err = fillFieldPropertiesOnly(it.upsertMsg.InsertMsg.GetFieldsData(), it.schema)
if err != nil {
log.Warn("fill field properties failed when upsert", zap.Error(err))
return merr.WrapErrAsInputErrorWhen(err, merr.ErrParameterInvalid)
}
@ -1068,6 +1072,26 @@ func (it *upsertTask) PreExecute(ctx context.Context) error {
}
}
// deduplicate upsert data to handle duplicate primary keys in the same batch
primaryFieldSchema, err := typeutil.GetPrimaryFieldSchema(schema.CollectionSchema)
if err != nil {
log.Warn("fail to get primary field schema", zap.Error(err))
return err
}
deduplicatedFieldsData, newNumRows, err := DeduplicateFieldData(primaryFieldSchema, it.req.GetFieldsData(), schema)
if err != nil {
log.Warn("fail to deduplicate upsert data", zap.Error(err))
}
// dedup won't decrease numOfRows to 0
if newNumRows > 0 && newNumRows != it.req.NumRows {
log.Info("upsert data deduplicated",
zap.Uint32("original_num_rows", it.req.NumRows),
zap.Uint32("deduplicated_num_rows", newNumRows))
it.req.FieldsData = deduplicatedFieldsData
it.req.NumRows = newNumRows
}
it.upsertMsg = &msgstream.UpsertMsg{
InsertMsg: &msgstream.InsertMsg{
InsertRequest: &msgpb.InsertRequest{

View File

@ -1051,6 +1051,7 @@ func TestUpdateTask_PreExecute_InvalidNumRows(t *testing.T) {
}, nil).Build()
task := createTestUpdateTask()
task.req.FieldsData = []*schemapb.FieldData{}
task.req.NumRows = 0 // Invalid num_rows
err := task.PreExecute(context.Background())
@ -1534,3 +1535,334 @@ func TestUpsertTask_PlanNamespace_AfterPreExecute(t *testing.T) {
assert.Equal(t, *task.req.Namespace, *capturedPlan.Namespace)
})
}
func TestUpsertTask_Deduplicate_Int64PK(t *testing.T) {
// Test deduplication with Int64 primary key
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
IsPrimaryKey: true,
}
collSchema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
primaryFieldSchema,
{
Name: "float_field",
FieldID: 101,
DataType: schemapb.DataType_Float,
},
},
}
schema := newSchemaInfo(collSchema)
// Create field data with duplicate IDs: [1, 2, 3, 2, 1]
// Expected to keep last occurrence of each: [3, 2, 1] (indices 2, 3, 4)
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
Type: schemapb.DataType_Int64,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_LongData{
LongData: &schemapb.LongArray{
Data: []int64{1, 2, 3, 2, 1},
},
},
},
},
},
{
FieldName: "float_field",
Type: schemapb.DataType_Float,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_FloatData{
FloatData: &schemapb.FloatArray{
Data: []float32{1.1, 2.2, 3.3, 2.4, 1.5},
},
},
},
},
},
}
deduplicatedFields, newNumRows, err := DeduplicateFieldData(primaryFieldSchema, fieldsData, schema)
assert.NoError(t, err)
assert.Equal(t, uint32(3), newNumRows)
assert.Equal(t, 2, len(deduplicatedFields))
// Check deduplicated primary keys
pkField := deduplicatedFields[0]
pkData := pkField.GetScalars().GetLongData().GetData()
assert.Equal(t, 3, len(pkData))
assert.Equal(t, []int64{3, 2, 1}, pkData)
// Check corresponding float values (should be 3.3, 2.4, 1.5)
floatField := deduplicatedFields[1]
floatData := floatField.GetScalars().GetFloatData().GetData()
assert.Equal(t, 3, len(floatData))
assert.Equal(t, []float32{3.3, 2.4, 1.5}, floatData)
}
func TestUpsertTask_Deduplicate_VarCharPK(t *testing.T) {
// Test deduplication with VarChar primary key
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_VarChar,
IsPrimaryKey: true,
}
collSchema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
primaryFieldSchema,
{
Name: "int_field",
FieldID: 101,
DataType: schemapb.DataType_Int64,
},
},
}
schema := newSchemaInfo(collSchema)
// Create field data with duplicate IDs: ["a", "b", "c", "b", "a"]
// Expected to keep last occurrence of each: ["c", "b", "a"] (indices 2, 3, 4)
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
Type: schemapb.DataType_VarChar,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_StringData{
StringData: &schemapb.StringArray{
Data: []string{"a", "b", "c", "b", "a"},
},
},
},
},
},
{
FieldName: "int_field",
Type: schemapb.DataType_Int64,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_LongData{
LongData: &schemapb.LongArray{
Data: []int64{100, 200, 300, 201, 101},
},
},
},
},
},
}
deduplicatedFields, newNumRows, err := DeduplicateFieldData(primaryFieldSchema, fieldsData, schema)
assert.NoError(t, err)
assert.Equal(t, uint32(3), newNumRows)
assert.Equal(t, 2, len(deduplicatedFields))
// Check deduplicated primary keys
pkField := deduplicatedFields[0]
pkData := pkField.GetScalars().GetStringData().GetData()
assert.Equal(t, 3, len(pkData))
assert.Equal(t, []string{"c", "b", "a"}, pkData)
// Check corresponding int64 values (should be 300, 201, 101)
int64Field := deduplicatedFields[1]
int64Data := int64Field.GetScalars().GetLongData().GetData()
assert.Equal(t, 3, len(int64Data))
assert.Equal(t, []int64{300, 201, 101}, int64Data)
}
func TestUpsertTask_Deduplicate_NoDuplicates(t *testing.T) {
// Test with no duplicates - should return original data
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
IsPrimaryKey: true,
}
collSchema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
primaryFieldSchema,
},
}
schema := newSchemaInfo(collSchema)
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
Type: schemapb.DataType_Int64,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_LongData{
LongData: &schemapb.LongArray{
Data: []int64{1, 2, 3, 4, 5},
},
},
},
},
},
}
deduplicatedFields, newNumRows, err := DeduplicateFieldData(primaryFieldSchema, fieldsData, schema)
assert.NoError(t, err)
assert.Equal(t, uint32(5), newNumRows)
assert.Equal(t, 1, len(deduplicatedFields))
// Should be unchanged
pkField := deduplicatedFields[0]
pkData := pkField.GetScalars().GetLongData().GetData()
assert.Equal(t, []int64{1, 2, 3, 4, 5}, pkData)
}
func TestUpsertTask_Deduplicate_WithVector(t *testing.T) {
// Test deduplication with vector field
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
IsPrimaryKey: true,
}
collSchema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
primaryFieldSchema,
{
Name: "vector",
FieldID: 101,
DataType: schemapb.DataType_FloatVector,
},
},
}
schema := newSchemaInfo(collSchema)
dim := 4
// Create field data with duplicate IDs: [1, 2, 1]
// Expected to keep indices [1, 2] (last occurrence of 2, last occurrence of 1)
fieldsData := []*schemapb.FieldData{
{
FieldName: "id",
Type: schemapb.DataType_Int64,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_LongData{
LongData: &schemapb.LongArray{
Data: []int64{1, 2, 1},
},
},
},
},
},
{
FieldName: "vector",
Type: schemapb.DataType_FloatVector,
Field: &schemapb.FieldData_Vectors{
Vectors: &schemapb.VectorField{
Dim: int64(dim),
Data: &schemapb.VectorField_FloatVector{
FloatVector: &schemapb.FloatArray{
Data: []float32{
1.0, 1.1, 1.2, 1.3, // vector for ID 1 (first occurrence)
2.0, 2.1, 2.2, 2.3, // vector for ID 2
1.4, 1.5, 1.6, 1.7, // vector for ID 1 (second occurrence - keep this)
},
},
},
},
},
},
}
deduplicatedFields, newNumRows, err := DeduplicateFieldData(primaryFieldSchema, fieldsData, schema)
assert.NoError(t, err)
assert.Equal(t, uint32(2), newNumRows)
assert.Equal(t, 2, len(deduplicatedFields))
// Check deduplicated primary keys
pkField := deduplicatedFields[0]
pkData := pkField.GetScalars().GetLongData().GetData()
assert.Equal(t, 2, len(pkData))
assert.Equal(t, []int64{2, 1}, pkData)
// Check corresponding vector (should keep vectors for ID 2 and ID 1's last occurrence)
vectorField := deduplicatedFields[1]
vectorData := vectorField.GetVectors().GetFloatVector().GetData()
assert.Equal(t, 8, len(vectorData)) // 2 vectors * 4 dimensions
expectedVector := []float32{
2.0, 2.1, 2.2, 2.3, // vector for ID 2
1.4, 1.5, 1.6, 1.7, // vector for ID 1 (last occurrence)
}
assert.Equal(t, expectedVector, vectorData)
}
func TestUpsertTask_Deduplicate_EmptyData(t *testing.T) {
// Test with empty data
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
IsPrimaryKey: true,
}
collSchema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
primaryFieldSchema,
},
}
schema := newSchemaInfo(collSchema)
fieldsData := []*schemapb.FieldData{}
deduplicatedFields, newNumRows, err := DeduplicateFieldData(primaryFieldSchema, fieldsData, schema)
assert.NoError(t, err)
assert.Equal(t, uint32(0), newNumRows)
assert.Equal(t, 0, len(deduplicatedFields))
}
func TestUpsertTask_Deduplicate_MissingPrimaryKey(t *testing.T) {
// Test with missing primary key field
primaryFieldSchema := &schemapb.FieldSchema{
Name: "id",
FieldID: 100,
DataType: schemapb.DataType_Int64,
IsPrimaryKey: true,
}
collSchema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
primaryFieldSchema,
{
Name: "other_field",
FieldID: 101,
DataType: schemapb.DataType_Float,
},
},
}
schema := newSchemaInfo(collSchema)
fieldsData := []*schemapb.FieldData{
{
FieldName: "other_field",
Type: schemapb.DataType_Float,
Field: &schemapb.FieldData_Scalars{
Scalars: &schemapb.ScalarField{
Data: &schemapb.ScalarField_FloatData{
FloatData: &schemapb.FloatArray{
Data: []float32{1.1, 2.2},
},
},
},
},
},
}
_, _, err := DeduplicateFieldData(primaryFieldSchema, fieldsData, schema)
assert.Error(t, err)
// validateFieldDataColumns will fail first due to column count mismatch
// or the function will fail when trying to find primary key
assert.True(t, err != nil)
}

View File

@ -1046,6 +1046,103 @@ func parsePrimaryFieldData2IDs(fieldData *schemapb.FieldData) (*schemapb.IDs, er
return primaryData, nil
}
// findLastOccurrenceIndices finds indices of last occurrences for each unique ID
func findLastOccurrenceIndices[T comparable](ids []T) []int {
lastOccurrence := make(map[T]int, len(ids))
for idx, id := range ids {
lastOccurrence[id] = idx
}
keepIndices := make([]int, 0, len(lastOccurrence))
for idx, id := range ids {
if lastOccurrence[id] == idx {
keepIndices = append(keepIndices, idx)
}
}
return keepIndices
}
// DeduplicateFieldData removes duplicate primary keys from field data,
// keeping the last occurrence of each ID
func DeduplicateFieldData(primaryFieldSchema *schemapb.FieldSchema, fieldsData []*schemapb.FieldData, schema *schemaInfo) ([]*schemapb.FieldData, uint32, error) {
if len(fieldsData) == 0 {
return fieldsData, 0, nil
}
if err := fillFieldPropertiesOnly(fieldsData, schema); err != nil {
return nil, 0, err
}
// find primary field data
var primaryFieldData *schemapb.FieldData
for _, field := range fieldsData {
if field.GetFieldName() == primaryFieldSchema.GetName() {
primaryFieldData = field
break
}
}
if primaryFieldData == nil {
return nil, 0, merr.WrapErrParameterInvalidMsg(fmt.Sprintf("must assign pk when upsert, primary field: %v", primaryFieldSchema.GetName()))
}
// get row count
var numRows int
switch primaryFieldData.Field.(type) {
case *schemapb.FieldData_Scalars:
scalarField := primaryFieldData.GetScalars()
switch scalarField.Data.(type) {
case *schemapb.ScalarField_LongData:
numRows = len(scalarField.GetLongData().GetData())
case *schemapb.ScalarField_StringData:
numRows = len(scalarField.GetStringData().GetData())
default:
return nil, 0, merr.WrapErrParameterInvalidMsg("unsupported primary key type")
}
default:
return nil, 0, merr.WrapErrParameterInvalidMsg("primary field must be scalar type")
}
if numRows == 0 {
return fieldsData, 0, nil
}
// build map to track last occurrence of each primary key
var keepIndices []int
switch primaryFieldData.Field.(type) {
case *schemapb.FieldData_Scalars:
scalarField := primaryFieldData.GetScalars()
switch scalarField.Data.(type) {
case *schemapb.ScalarField_LongData:
// for Int64 primary keys
intIDs := scalarField.GetLongData().GetData()
keepIndices = findLastOccurrenceIndices(intIDs)
case *schemapb.ScalarField_StringData:
// for VarChar primary keys
strIDs := scalarField.GetStringData().GetData()
keepIndices = findLastOccurrenceIndices(strIDs)
}
}
// if no duplicates found, return original data
if len(keepIndices) == numRows {
return fieldsData, uint32(numRows), nil
}
log.Info("duplicate primary keys detected in upsert request, deduplicating",
zap.Int("original_rows", numRows),
zap.Int("deduplicated_rows", len(keepIndices)))
// use typeutil.AppendFieldData to rebuild field data with deduplicated rows
result := typeutil.PrepareResultFieldData(fieldsData, int64(len(keepIndices)))
for _, idx := range keepIndices {
typeutil.AppendFieldData(result, fieldsData, int64(idx))
}
return result, uint32(len(keepIndices)), nil
}
// autoGenPrimaryFieldData generate primary data when autoID == true
func autoGenPrimaryFieldData(fieldSchema *schemapb.FieldSchema, data interface{}) (*schemapb.FieldData, error) {
var fieldData schemapb.FieldData
@ -1105,52 +1202,34 @@ func autoGenDynamicFieldData(data [][]byte) *schemapb.FieldData {
}
}
// fillFieldPropertiesBySchema set fieldID to fieldData according FieldSchemas
func fillFieldPropertiesBySchema(columns []*schemapb.FieldData, schema *schemapb.CollectionSchema) error {
fieldName2Schema := make(map[string]*schemapb.FieldSchema)
// validateFieldDataColumns validates that all required fields are present and no unknown fields exist.
// It checks:
// 1. The number of columns matches the expected count (excluding BM25 output fields)
// 2. All field names exist in the schema
// Returns detailed error message listing expected and provided fields if validation fails.
func validateFieldDataColumns(columns []*schemapb.FieldData, schema *schemaInfo) error {
expectColumnNum := 0
// Count expected columns
for _, field := range schema.GetFields() {
fieldName2Schema[field.Name] = field
if !typeutil.IsBM25FunctionOutputField(field, schema) {
if !typeutil.IsBM25FunctionOutputField(field, schema.CollectionSchema) {
expectColumnNum++
}
}
for _, structField := range schema.GetStructArrayFields() {
for _, field := range structField.GetFields() {
fieldName2Schema[field.Name] = field
expectColumnNum++
}
expectColumnNum += len(structField.GetFields())
}
// Validate column count
if len(columns) != expectColumnNum {
return fmt.Errorf("len(columns) mismatch the expectColumnNum, expectColumnNum: %d, len(columns): %d",
expectColumnNum, len(columns))
}
// Validate field existence using schemaHelper
for _, fieldData := range columns {
if fieldSchema, ok := fieldName2Schema[fieldData.FieldName]; ok {
fieldData.FieldId = fieldSchema.FieldID
fieldData.Type = fieldSchema.DataType
// Set the ElementType because it may not be set in the insert request.
if fieldData.Type == schemapb.DataType_Array {
fd, ok := fieldData.Field.(*schemapb.FieldData_Scalars)
if !ok || fd.Scalars.GetArrayData() == nil {
return fmt.Errorf("field convert FieldData_Scalars fail in fieldData, fieldName: %s,"+
" collectionName:%s", fieldData.FieldName, schema.Name)
}
fd.Scalars.GetArrayData().ElementType = fieldSchema.ElementType
} else if fieldData.Type == schemapb.DataType_ArrayOfVector {
fd, ok := fieldData.Field.(*schemapb.FieldData_Vectors)
if !ok || fd.Vectors.GetVectorArray() == nil {
return fmt.Errorf("field convert FieldData_Vectors fail in fieldData, fieldName: %s,"+
" collectionName:%s", fieldData.FieldName, schema.Name)
}
fd.Vectors.GetVectorArray().ElementType = fieldSchema.ElementType
}
} else {
_, err := schema.schemaHelper.GetFieldFromNameDefaultJSON(fieldData.FieldName)
if err != nil {
return fmt.Errorf("fieldName %v not exist in collection schema", fieldData.FieldName)
}
}
@ -1158,6 +1237,41 @@ func fillFieldPropertiesBySchema(columns []*schemapb.FieldData, schema *schemapb
return nil
}
// fillFieldPropertiesOnly fills field properties (FieldId, Type, ElementType) from schema.
// It assumes that columns have been validated and does not perform validation.
// Use validateFieldDataColumns before calling this function if validation is needed.
func fillFieldPropertiesOnly(columns []*schemapb.FieldData, schema *schemaInfo) error {
for _, fieldData := range columns {
// Use schemaHelper to get field schema, automatically handles dynamic fields
fieldSchema, err := schema.schemaHelper.GetFieldFromNameDefaultJSON(fieldData.FieldName)
if err != nil {
return fmt.Errorf("fieldName %v not exist in collection schema", fieldData.FieldName)
}
fieldData.FieldId = fieldSchema.FieldID
fieldData.Type = fieldSchema.DataType
// Set the ElementType because it may not be set in the insert request.
if fieldData.Type == schemapb.DataType_Array {
fd, ok := fieldData.Field.(*schemapb.FieldData_Scalars)
if !ok || fd.Scalars.GetArrayData() == nil {
return fmt.Errorf("field convert FieldData_Scalars fail in fieldData, fieldName: %s, collectionName: %s",
fieldData.FieldName, schema.Name)
}
fd.Scalars.GetArrayData().ElementType = fieldSchema.ElementType
} else if fieldData.Type == schemapb.DataType_ArrayOfVector {
fd, ok := fieldData.Field.(*schemapb.FieldData_Vectors)
if !ok || fd.Vectors.GetVectorArray() == nil {
return fmt.Errorf("field convert FieldData_Vectors fail in fieldData, fieldName: %s, collectionName: %s",
fieldData.FieldName, schema.Name)
}
fd.Vectors.GetVectorArray().ElementType = fieldSchema.ElementType
}
}
return nil
}
func ValidateUsername(username string) error {
username = strings.TrimSpace(username)

View File

@ -606,28 +606,64 @@ func TestValidateMultipleVectorFields(t *testing.T) {
}
func TestFillFieldIDBySchema(t *testing.T) {
schema := &schemapb.CollectionSchema{}
columns := []*schemapb.FieldData{
{
FieldName: "TestFillFieldIDBySchema",
},
}
// length mismatch
assert.Error(t, fillFieldPropertiesBySchema(columns, schema))
schema = &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
t.Run("column count mismatch", func(t *testing.T) {
collSchema := &schemapb.CollectionSchema{}
schema := newSchemaInfo(collSchema)
columns := []*schemapb.FieldData{
{
Name: "TestFillFieldIDBySchema",
DataType: schemapb.DataType_Int64,
FieldID: 1,
FieldName: "TestFillFieldIDBySchema",
},
},
}
assert.NoError(t, fillFieldPropertiesBySchema(columns, schema))
assert.Equal(t, "TestFillFieldIDBySchema", columns[0].FieldName)
assert.Equal(t, schemapb.DataType_Int64, columns[0].Type)
assert.Equal(t, int64(1), columns[0].FieldId)
}
// Validation should fail due to column count mismatch
assert.Error(t, validateFieldDataColumns(columns, schema))
})
t.Run("successful validation and fill", func(t *testing.T) {
collSchema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
{
Name: "TestFillFieldIDBySchema",
DataType: schemapb.DataType_Int64,
FieldID: 1,
},
},
}
schema := newSchemaInfo(collSchema)
columns := []*schemapb.FieldData{
{
FieldName: "TestFillFieldIDBySchema",
},
}
// Validation should succeed
assert.NoError(t, validateFieldDataColumns(columns, schema))
// Fill properties should succeed
assert.NoError(t, fillFieldPropertiesOnly(columns, schema))
assert.Equal(t, "TestFillFieldIDBySchema", columns[0].FieldName)
assert.Equal(t, schemapb.DataType_Int64, columns[0].Type)
assert.Equal(t, int64(1), columns[0].FieldId)
})
t.Run("field not in schema", func(t *testing.T) {
collSchema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
{
Name: "FieldA",
DataType: schemapb.DataType_Int64,
FieldID: 1,
},
},
}
schema := newSchemaInfo(collSchema)
columns := []*schemapb.FieldData{
{
FieldName: "FieldB",
},
}
// Validation should fail because FieldB is not in schema
err := validateFieldDataColumns(columns, schema)
assert.Error(t, err)
assert.Contains(t, err.Error(), "not exist in collection schema")
})
}
func TestValidateUsername(t *testing.T) {

View File

@ -550,4 +550,343 @@ class TestMilvusClientUpsertValid(TestMilvusClientV2Base):
self.release_partitions(client, collection_name, partition_name)
self.drop_partition(client, collection_name, partition_name)
if self.has_collection(client, collection_name)[0]:
self.drop_collection(client, collection_name)
self.drop_collection(client, collection_name)
class TestMilvusClientUpsertDedup(TestMilvusClientV2Base):
"""Test case for upsert deduplication functionality"""
@pytest.fixture(scope="function", params=["COSINE", "L2"])
def metric_type(self, request):
yield request.param
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_dedup_int64_pk(self):
"""
target: test upsert with duplicate int64 primary keys in same batch
method:
1. create collection with int64 primary key
2. upsert data with duplicate primary keys [1, 2, 3, 2, 1]
3. query to verify only last occurrence is kept
expected: only 3 unique records exist, with data from last occurrence
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. upsert data with duplicate PKs: [1, 2, 3, 2, 1]
# Expected: keep last occurrence -> [3, 2, 1] at indices [2, 3, 4]
rng = np.random.default_rng(seed=19530)
rows = [
{default_primary_key_field_name: 1, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 1.0, default_string_field_name: "str_1_first"},
{default_primary_key_field_name: 2, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 2.0, default_string_field_name: "str_2_first"},
{default_primary_key_field_name: 3, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 3.0, default_string_field_name: "str_3"},
{default_primary_key_field_name: 2, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 2.1, default_string_field_name: "str_2_last"},
{default_primary_key_field_name: 1, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 1.1, default_string_field_name: "str_1_last"},
]
results = self.upsert(client, collection_name, rows)[0]
# After deduplication, should only have 3 records
assert results['upsert_count'] == 3
# 3. query to verify deduplication - should have only 3 unique records
query_results = self.query(client, collection_name, filter="id >= 0")[0]
assert len(query_results) == 3
# Verify that last occurrence data is kept
id_to_data = {item['id']: item for item in query_results}
assert 1 in id_to_data
assert 2 in id_to_data
assert 3 in id_to_data
# Check that data from last occurrence is preserved
assert id_to_data[1]['float'] == 1.1
assert id_to_data[1]['varchar'] == "str_1_last"
assert id_to_data[2]['float'] == 2.1
assert id_to_data[2]['varchar'] == "str_2_last"
assert id_to_data[3]['float'] == 3.0
assert id_to_data[3]['varchar'] == "str_3"
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_dedup_varchar_pk(self):
"""
target: test upsert with duplicate varchar primary keys in same batch
method:
1. create collection with varchar primary key
2. upsert data with duplicate primary keys ["a", "b", "c", "b", "a"]
3. query to verify only last occurrence is kept
expected: only 3 unique records exist, with data from last occurrence
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection with varchar primary key
schema = self.create_schema(client, enable_dynamic_field=True)[0]
schema.add_field("id", DataType.VARCHAR, max_length=64, is_primary=True, auto_id=False)
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
schema.add_field("age", DataType.INT64)
index_params = self.prepare_index_params(client)[0]
index_params.add_index(default_vector_field_name, metric_type="COSINE")
self.create_collection(client, collection_name, default_dim, schema=schema,
index_params=index_params, consistency_level="Strong")
# 2. upsert data with duplicate PKs: ["a", "b", "c", "b", "a"]
# Expected: keep last occurrence -> ["c", "b", "a"] at indices [2, 3, 4]
rng = np.random.default_rng(seed=19530)
rows = [
{"id": "a", default_vector_field_name: list(rng.random((1, default_dim))[0]),
"age": 10},
{"id": "b", default_vector_field_name: list(rng.random((1, default_dim))[0]),
"age": 20},
{"id": "c", default_vector_field_name: list(rng.random((1, default_dim))[0]),
"age": 30},
{"id": "b", default_vector_field_name: list(rng.random((1, default_dim))[0]),
"age": 21},
{"id": "a", default_vector_field_name: list(rng.random((1, default_dim))[0]),
"age": 11},
]
results = self.upsert(client, collection_name, rows)[0]
# After deduplication, should only have 3 records
assert results['upsert_count'] == 3
# 3. query to verify deduplication
query_results = self.query(client, collection_name, filter='id in ["a", "b", "c"]')[0]
assert len(query_results) == 3
# Verify that last occurrence data is kept
id_to_data = {item['id']: item for item in query_results}
assert "a" in id_to_data
assert "b" in id_to_data
assert "c" in id_to_data
# Check that data from last occurrence is preserved
assert id_to_data["a"]["age"] == 11
assert id_to_data["b"]["age"] == 21
assert id_to_data["c"]["age"] == 30
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_dedup_all_duplicates(self):
"""
target: test upsert when all records have same primary key
method:
1. create collection
2. upsert 5 records with same primary key
3. query to verify only 1 record exists
expected: only 1 record exists with data from last occurrence
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. upsert data where all have same PK (id=1)
rng = np.random.default_rng(seed=19530)
rows = [
{default_primary_key_field_name: 1, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: i * 1.0, default_string_field_name: f"version_{i}"}
for i in range(5)
]
results = self.upsert(client, collection_name, rows)[0]
# After deduplication, should only have 1 record
assert results['upsert_count'] == 1
# 3. query to verify only 1 record exists
query_results = self.query(client, collection_name, filter="id == 1")[0]
assert len(query_results) == 1
# Verify it's the last occurrence (i=4)
assert query_results[0]['float'] == 4.0
assert query_results[0]['varchar'] == "version_4"
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_dedup_no_duplicates(self):
"""
target: test upsert with no duplicate primary keys
method:
1. create collection
2. upsert data with unique primary keys
3. query to verify all records exist
expected: all records exist as-is
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. upsert data with unique PKs
rng = np.random.default_rng(seed=19530)
nb = 10
rows = [
{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: i * 1.0, default_string_field_name: str(i)}
for i in range(nb)
]
results = self.upsert(client, collection_name, rows)[0]
# No deduplication should occur
assert results['upsert_count'] == nb
# 3. query to verify all records exist
query_results = self.query(client, collection_name, filter=f"id >= 0")[0]
assert len(query_results) == nb
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_upsert_dedup_large_batch(self):
"""
target: test upsert deduplication with large batch
method:
1. create collection
2. upsert large batch with 50% duplicate primary keys
3. query to verify correct number of records
expected: only unique records exist
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. upsert large batch where each ID appears twice
rng = np.random.default_rng(seed=19530)
nb = 500
unique_ids = nb // 2 # 250 unique IDs
rows = []
for i in range(nb):
pk = i % unique_ids # This creates duplicates: 0,1,2...249,0,1,2...249
rows.append({
default_primary_key_field_name: pk,
default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: float(i), # Different value for each row
default_string_field_name: f"batch_{i}"
})
results = self.upsert(client, collection_name, rows)[0]
# After deduplication, should only have unique_ids records
assert results['upsert_count'] == unique_ids
# 3. query to verify correct number of records
query_results = self.query(client, collection_name, filter=f"id >= 0", limit=1000)[0]
assert len(query_results) == unique_ids
# Verify that last occurrence is kept (should have higher float values)
for item in query_results:
pk = item['id']
# Last occurrence of pk is at index (pk + unique_ids)
expected_float = float(pk + unique_ids)
assert item['float'] == expected_float
assert item['varchar'] == f"batch_{pk + unique_ids}"
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_dedup_with_partition(self):
"""
target: test upsert deduplication works correctly with partitions
method:
1. create collection with partition
2. upsert data with duplicates to specific partition
3. query to verify deduplication in partition
expected: deduplication works within partition
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
partition_name = cf.gen_unique_str("partition")
# 1. create collection and partition
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
self.create_partition(client, collection_name, partition_name)
# 2. upsert data with duplicates to partition
rng = np.random.default_rng(seed=19530)
rows = [
{default_primary_key_field_name: 1, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 1.0, default_string_field_name: "first"},
{default_primary_key_field_name: 2, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 2.0, default_string_field_name: "unique"},
{default_primary_key_field_name: 1, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: 1.1, default_string_field_name: "last"},
]
results = self.upsert(client, collection_name, rows, partition_name=partition_name)[0]
assert results['upsert_count'] == 2
# 3. query partition to verify deduplication
query_results = self.query(client, collection_name, filter="id >= 0",
partition_names=[partition_name])[0]
assert len(query_results) == 2
# Verify correct data
id_to_data = {item['id']: item for item in query_results}
assert id_to_data[1]['float'] == 1.1
assert id_to_data[1]['varchar'] == "last"
assert id_to_data[2]['float'] == 2.0
assert id_to_data[2]['varchar'] == "unique"
self.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_upsert_dedup_with_vectors(self):
"""
target: test upsert deduplication preserves correct vector data
method:
1. create collection
2. upsert data with duplicate PKs but different vectors
3. search to verify correct vector is preserved
expected: vector from last occurrence is preserved
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
# 1. create collection
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. upsert data with duplicate PK=1 but different vectors
# Create distinctly different vectors for easy verification
first_vector = [1.0] * default_dim # All 1.0
last_vector = [2.0] * default_dim # All 2.0
rows = [
{default_primary_key_field_name: 1, default_vector_field_name: first_vector,
default_float_field_name: 1.0, default_string_field_name: "first"},
{default_primary_key_field_name: 2, default_vector_field_name: [0.5] * default_dim,
default_float_field_name: 2.0, default_string_field_name: "unique"},
{default_primary_key_field_name: 1, default_vector_field_name: last_vector,
default_float_field_name: 1.1, default_string_field_name: "last"},
]
results = self.upsert(client, collection_name, rows)[0]
assert results['upsert_count'] == 2
# 3. query to get vector data
query_results = self.query(client, collection_name, filter="id == 1",
output_fields=["id", "vector", "float", "varchar"])[0]
assert len(query_results) == 1
# Verify it's the last occurrence with last_vector
result = query_results[0]
assert result['float'] == 1.1
assert result['varchar'] == "last"
# Vector should be last_vector (all 2.0)
assert all(abs(v - 2.0) < 0.001 for v in result['vector'])
self.drop_collection(client, collection_name)

View File

@ -2077,7 +2077,7 @@ class TestUpsertInvalid(TestcaseBase):
log.debug(f"dirty_i: {dirty_i}")
for i in range(len(data)):
if data[i][dirty_i].__class__ is int:
tmp = data[i][0]
tmp = data[i][dirty_i]
data[i][dirty_i] = "iamstring"
error = {ct.err_code: 999, ct.err_msg: "The Input data type is inconsistent with defined schema"}
collection_w.upsert(data=data, check_task=CheckTasks.err_res, check_items=error)