enhance: bulkinsert supports parsing sparse vector form parquet struct (#40874)

issue: https://github.com/milvus-io/milvus/issues/40777
pr: https://github.com/milvus-io/milvus/pull/40927

Signed-off-by: yhmo <yihua.mo@zilliz.com>
This commit is contained in:
groot 2025-03-31 14:20:31 +08:00 committed by GitHub
parent 0ba389e434
commit 712d1644d8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 694 additions and 36 deletions

View File

@ -40,8 +40,9 @@ type FieldReader struct {
columnIndex int
columnReader *pqarrow.ColumnReader
dim int
field *schemapb.FieldSchema
dim int
field *schemapb.FieldSchema
sparseIsString bool
}
func NewFieldReader(ctx context.Context, reader *pqarrow.FileReader, columnIndex int, field *schemapb.FieldSchema) (*FieldReader, error) {
@ -58,11 +59,19 @@ func NewFieldReader(ctx context.Context, reader *pqarrow.FileReader, columnIndex
}
}
// set a flag here to know whether a sparse vector is stored as JSON-format string or parquet struct
// because we don't intend to check it every time the Next() is called
sparseIsString := true
if field.GetDataType() == schemapb.DataType_SparseFloatVector {
_, sparseIsString = IsValidSparseVectorSchema(columnReader.Field().Type)
}
cr := &FieldReader{
columnIndex: columnIndex,
columnReader: columnReader,
dim: int(dim),
field: field,
columnIndex: columnIndex,
columnReader: columnReader,
dim: int(dim),
field: field,
sparseIsString: sparseIsString,
}
return cr, nil
}
@ -416,6 +425,74 @@ func ReadNullableIntegerOrFloatData[T constraints.Integer | constraints.Float](p
return data, validData, nil
}
// This method returns a []map[string]arrow.Array
// map[string]arrow.Array represents a struct
// For example 1:
//
// struct {
// name string
// age int
// }
//
// The ReadStructData() will return a list like:
//
// [
// {"name": ["a", "b", "c"], "age": [4, 5, 6]},
// {"name": ["e", "f"], "age": [7, 8]}
// ]
//
// Value type of "name" is array.String, value type of "age" is array.Int32
// The length of the list is equal to the length of chunked.Chunks()
//
// For sparse vector, the map[string]arrow.Array is like {"indices": array.List, "values": array.List}
// For example 2:
//
// struct {
// indices []uint32
// values []float32
// }
//
// The ReadStructData() will return a list like:
//
// [
// {"indices": [[1, 2, 3], [4, 5], [6, 7]], "values": [[0.1, 0.2, 0.3], [0.4, 0.5], [0.6, 0.7]]},
// {"indices": [[8], [9, 10]], "values": [[0.8], [0.9, 1.0]]}
// ]
//
// Value type of "indices" is array.List, element type is array.Uint32
// Value type of "values" is array.List, element type is array.Float32
// The length of the list is equal to the length of chunked.Chunks()
//
// Note: now the ReadStructData() is used by SparseVector type and SparseVector is not nullable,
// create a new method ReadNullableStructData() if we have nullable struct type in future.
func ReadStructData(pcr *FieldReader, count int64) ([]map[string]arrow.Array, error) {
chunked, err := pcr.columnReader.NextBatch(count)
if err != nil {
return nil, err
}
data := make([]map[string]arrow.Array, 0, count)
for _, chunk := range chunked.Chunks() {
structReader, ok := chunk.(*array.Struct)
if structReader.NullN() > 0 {
return nil, merr.WrapErrParameterInvalidMsg("has null value, but struct doesn't support nullable yet")
}
if !ok {
return nil, WrapTypeErr("struct", chunk.DataType().Name(), pcr.field)
}
structType := structReader.DataType().(*arrow.StructType)
st := make(map[string]arrow.Array)
for k, field := range structType.Fields() {
st[field.Name] = structReader.Field(k)
}
data = append(data, st)
}
if len(data) == 0 {
return nil, nil
}
return data, nil
}
func ReadStringData(pcr *FieldReader, count int64) (any, error) {
chunked, err := pcr.columnReader.NextBatch(count)
if err != nil {
@ -670,8 +747,165 @@ func parseSparseFloatRowVector(str string) ([]byte, uint32, error) {
return rowVec, maxIdx, nil
}
// This method accepts input from ReadStructData()
// For sparse vector, the map[string]arrow.Array is like {"indices": array.List, "values": array.List}
// Although "indices" and "values" is two-dim list, the array.List provides ListValues() and ValueOffsets()
// to return one-dim list. We use the start/end position of ValueOffsets() to get the correct sparse vector
// from ListValues().
// Note that arrow.Uint32.Value(int i) accepts an int32 value, the max length of indices/values is max value of int32
func parseSparseFloatVectorStructs(structs []map[string]arrow.Array) ([][]byte, uint32, error) {
byteArr := make([][]byte, 0)
maxDim := uint32(0)
for _, st := range structs {
indices, ok1 := st[sparseVectorIndice]
values, ok2 := st[sparseVectorValues]
if !ok1 || !ok2 {
return nil, 0, merr.WrapErrImportFailed("Invalid parquet struct for SparseFloatVector: 'indices' or 'values' missed")
}
indicesList, ok1 := indices.(*array.List)
valuesList, ok2 := values.(*array.List)
if !ok1 || !ok2 {
return nil, 0, merr.WrapErrImportFailed("Invalid parquet struct for SparseFloatVector: 'indices' or 'values' is not list")
}
// Len() is the number of rows in this row group
if indices.Len() != values.Len() {
msg := fmt.Sprintf("Invalid parquet struct for SparseFloatVector: number of rows of 'indices' and 'values' mismatched, '%d' vs '%d'", indices.Len(), values.Len())
return nil, 0, merr.WrapErrImportFailed(msg)
}
// technically, DataType() of array.List must be arrow.ListType, but we still check here to ensure safety
indicesListType, ok1 := indicesList.DataType().(*arrow.ListType)
valuesListType, ok2 := valuesList.DataType().(*arrow.ListType)
if !ok1 || !ok2 {
return nil, 0, merr.WrapErrImportFailed("Invalid parquet struct for SparseFloatVector: incorrect arrow type of 'indices' or 'values'")
}
indexDataType := indicesListType.Elem().ID()
valueDataType := valuesListType.Elem().ID()
// The array.Uint32/array.Int64/array.Float32/array.Float64 are derived from arrow.Array
// The ListValues() returns arrow.Array interface, but the arrow.Array doesn't have Value(int) interface
// To call array.Uint32.Value(int), we need to explicitly cast the ListValues() to array.Uint32
// So, we declare two methods here to avoid type casting in the "for" loop
type GetIndex func(position int) uint32
type GetValue func(position int) float32
var getIndexFunc GetIndex
switch indexDataType {
case arrow.INT32:
indicesList := indicesList.ListValues().(*array.Int32)
getIndexFunc = func(position int) uint32 {
return (uint32)(indicesList.Value(position))
}
case arrow.UINT32:
indicesList := indicesList.ListValues().(*array.Uint32)
getIndexFunc = func(position int) uint32 {
return indicesList.Value(position)
}
case arrow.INT64:
indicesList := indicesList.ListValues().(*array.Int64)
getIndexFunc = func(position int) uint32 {
return (uint32)(indicesList.Value(position))
}
case arrow.UINT64:
indicesList := indicesList.ListValues().(*array.Uint64)
getIndexFunc = func(position int) uint32 {
return (uint32)(indicesList.Value(position))
}
default:
msg := fmt.Sprintf("Invalid parquet struct for SparseFloatVector: index type must be uint32/int32/uint64/int64 but actual type is '%s'", indicesListType.Elem().Name())
return nil, 0, merr.WrapErrImportFailed(msg)
}
var getValueFunc GetValue
switch valueDataType {
case arrow.FLOAT32:
valuesList := valuesList.ListValues().(*array.Float32)
getValueFunc = func(position int) float32 {
return valuesList.Value(position)
}
case arrow.FLOAT64:
valuesList := valuesList.ListValues().(*array.Float64)
getValueFunc = func(position int) float32 {
return (float32)(valuesList.Value(position))
}
default:
msg := fmt.Sprintf("Invalid parquet struct for SparseFloatVector: value type must be float32 or float64 but actual type is '%s'", valuesListType.Elem().Name())
return nil, 0, merr.WrapErrImportFailed(msg)
}
for i := 0; i < indicesList.Len(); i++ {
start, end := indicesList.ValueOffsets(i)
start2, end2 := valuesList.ValueOffsets(i)
rowLen := (int)(end - start)
rowLenValues := (int)(end2 - start2)
if rowLenValues != rowLen {
msg := fmt.Sprintf("Invalid parquet struct for SparseFloatVector: number of elements of 'indices' and 'values' mismatched, '%d' vs '%d'", rowLen, rowLenValues)
return nil, 0, merr.WrapErrImportFailed(msg)
}
rowIndices := make([]uint32, rowLen)
rowValues := make([]float32, rowLen)
for i := start; i < end; i++ {
rowIndices[i-start] = getIndexFunc((int)(i))
rowValues[i-start] = getValueFunc((int)(i))
}
// ensure the indices is sorted
sortedIndices, sortedValues := typeutil.SortSparseFloatRow(rowIndices, rowValues)
rowVec := typeutil.CreateSparseFloatRow(sortedIndices, sortedValues)
if err := typeutil.ValidateSparseFloatRows(rowVec); err != nil {
return byteArr, maxDim, err
}
// set the maxDim as the last value of sortedIndices since it has been sorted
if len(sortedIndices) > 0 && sortedIndices[len(sortedIndices)-1] > maxDim {
maxDim = sortedIndices[len(sortedIndices)-1]
}
byteArr = append(byteArr, rowVec) // rowVec could be an empty sparse
}
}
return byteArr, maxDim, nil
}
func ReadSparseFloatVectorData(pcr *FieldReader, count int64) (any, error) {
data, err := ReadStringData(pcr, count)
// read sparse vector from JSON-format string
if pcr.sparseIsString {
data, err := ReadStringData(pcr, count)
if err != nil {
return nil, err
}
if data == nil {
return nil, nil
}
byteArr := make([][]byte, 0, count)
maxDim := uint32(0)
for _, str := range data.([]string) {
rowVec, rowMaxIdx, err := parseSparseFloatRowVector(str)
if err != nil {
return nil, err
}
byteArr = append(byteArr, rowVec)
if rowMaxIdx > maxDim {
maxDim = rowMaxIdx
}
}
return &storage.SparseFloatVectorFieldData{
SparseFloatArray: schemapb.SparseFloatArray{
Dim: int64(maxDim),
Contents: byteArr,
},
}, nil
}
// read sparse vector from parquet struct
data, err := ReadStructData(pcr, count)
if err != nil {
return nil, err
}
@ -679,19 +913,9 @@ func ReadSparseFloatVectorData(pcr *FieldReader, count int64) (any, error) {
return nil, nil
}
byteArr := make([][]byte, 0, count)
maxDim := uint32(0)
for _, str := range data.([]string) {
rowVec, rowMaxIdx, err := parseSparseFloatRowVector(str)
if err != nil {
return nil, err
}
byteArr = append(byteArr, rowVec)
if rowMaxIdx > maxDim {
maxDim = rowMaxIdx
}
byteArr, maxDim, err := parseSparseFloatVectorStructs(data)
if err != nil {
return nil, err
}
return &storage.SparseFloatVectorFieldData{

View File

@ -3,6 +3,9 @@ package parquet
import (
"testing"
"github.com/apache/arrow/go/v12/arrow"
"github.com/apache/arrow/go/v12/arrow/array"
"github.com/apache/arrow/go/v12/arrow/memory"
"github.com/stretchr/testify/assert"
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
@ -90,3 +93,175 @@ func TestParseSparseFloatRowVector(t *testing.T) {
})
}
}
func TestParseSparseFloatVectorStructs(t *testing.T) {
mem := memory.NewGoAllocator()
checkFunc := func(indices arrow.Array, values arrow.Array, expectSucceed bool) ([][]byte, uint32) {
st := make(map[string]arrow.Array)
if indices != nil {
st[sparseVectorIndice] = indices
}
if values != nil {
st[sparseVectorValues] = values
}
structs := make([]map[string]arrow.Array, 0)
structs = append(structs, st)
byteArr, maxDim, err := parseSparseFloatVectorStructs(structs)
if expectSucceed {
assert.NoError(t, err)
} else {
assert.Error(t, err)
}
return byteArr, maxDim
}
genInt32Arr := func(len int) *array.Int32 {
builder := array.NewInt32Builder(mem)
data := make([]int32, 0)
validData := make([]bool, 0)
for i := 0; i < len; i++ {
data = append(data, (int32)(i))
validData = append(validData, i%2 == 0)
}
builder.AppendValues(data, validData)
return builder.NewInt32Array()
}
genFloat32Arr := func(len int) *array.Float32 {
builder := array.NewFloat32Builder(mem)
data := make([]float32, 0)
validData := make([]bool, 0)
for i := 0; i < len; i++ {
data = append(data, (float32)(i))
validData = append(validData, i%2 == 0)
}
builder.AppendValues(data, validData)
return builder.NewFloat32Array()
}
genInt32ArrList := func(arr []uint32) *array.List {
builder := array.NewListBuilder(mem, &arrow.Int32Type{})
builder.Append(true)
for _, v := range arr {
builder.ValueBuilder().(*array.Int32Builder).Append((int32)(v))
}
return builder.NewListArray()
}
genUint32ArrList := func(arr []uint32) *array.List {
builder := array.NewListBuilder(mem, &arrow.Uint32Type{})
if arr != nil {
builder.Append(true)
for _, v := range arr {
builder.ValueBuilder().(*array.Uint32Builder).Append(v)
}
}
return builder.NewListArray()
}
genInt64ArrList := func(arr []uint32) *array.List {
builder := array.NewListBuilder(mem, &arrow.Int64Type{})
if arr != nil {
builder.Append(true)
for _, v := range arr {
builder.ValueBuilder().(*array.Int64Builder).Append((int64)(v))
}
}
return builder.NewListArray()
}
genUint64ArrList := func(arr []uint32) *array.List {
builder := array.NewListBuilder(mem, &arrow.Uint64Type{})
if arr != nil {
builder.Append(true)
for _, v := range arr {
builder.ValueBuilder().(*array.Uint64Builder).Append((uint64)(v))
}
}
return builder.NewListArray()
}
genFloat32ArrList := func(arr []float32) *array.List {
builder := array.NewListBuilder(mem, &arrow.Float32Type{})
if arr != nil {
builder.Append(true)
for _, v := range arr {
builder.ValueBuilder().(*array.Float32Builder).Append(v)
}
}
return builder.NewListArray()
}
genFloat64ArrList := func(arr []float32) *array.List {
builder := array.NewListBuilder(mem, &arrow.Float64Type{})
if arr != nil {
builder.Append(true)
for _, v := range arr {
builder.ValueBuilder().(*array.Float64Builder).Append((float64)(v))
}
}
return builder.NewListArray()
}
// idices field missed
checkFunc(nil, genFloat32ArrList([]float32{0.1}), false)
// values field missed
checkFunc(genUint32ArrList([]uint32{1, 2}), nil, false)
// indices is not array.List
checkFunc(genInt32Arr(2), genFloat32ArrList([]float32{0.1, 0.2}), false)
// values is not array.List
checkFunc(genUint32ArrList([]uint32{1, 2}), genFloat32Arr(2), false)
// indices is not list of int32/uint32/int64/uint64 array
checkFunc(genFloat32ArrList([]float32{0.1, 0.2, 0.3}), genFloat32ArrList([]float32{0.1, 0.2, 0.3}), false)
// values is not list of float32/float64 array
checkFunc(genUint32ArrList([]uint32{1, 2, 3}), genUint32ArrList([]uint32{1, 2, 3}), false)
// row number of indices and values are different
checkFunc(genUint32ArrList([]uint32{1, 2}), genFloat32ArrList(nil), false)
// element number of indices and values are different
checkFunc(genUint32ArrList([]uint32{1, 2}), genFloat32ArrList([]float32{0.1}), false)
// duplicated indices
checkFunc(genUint32ArrList([]uint32{4, 5, 4}), genFloat32ArrList([]float32{0.11, 0.22, 0.23}), false)
// check result is correct
// can handle empty indices/values
byteArr, maxDim := checkFunc(genUint32ArrList([]uint32{}), genFloat32ArrList([]float32{}), true)
assert.Equal(t, uint32(0), maxDim)
assert.Equal(t, 1, len(byteArr))
assert.Equal(t, 0, len(byteArr[0]))
// note that the input indices is not sorted, the parseSparseFloatVectorStructs
// returns correct maxDim and byteArr
indices := []uint32{25, 78, 56}
values := []float32{0.11, 0.22, 0.23}
sortedIndices, sortedValues := typeutil.SortSparseFloatRow(indices, values)
rowBytes := typeutil.CreateSparseFloatRow(sortedIndices, sortedValues)
isValidFunc := func(indices arrow.Array, values arrow.Array) {
byteArr, maxDim := checkFunc(indices, values, true)
assert.Equal(t, uint32(78), maxDim)
assert.Equal(t, 1, len(byteArr))
assert.Equal(t, rowBytes, byteArr[0])
}
// ensure all supported types are correct
isValidFunc(genUint32ArrList(indices), genFloat32ArrList(values))
isValidFunc(genUint32ArrList(indices), genFloat64ArrList(values))
isValidFunc(genInt32ArrList(indices), genFloat32ArrList(values))
isValidFunc(genInt32ArrList(indices), genFloat64ArrList(values))
isValidFunc(genUint64ArrList(indices), genFloat32ArrList(values))
isValidFunc(genUint64ArrList(indices), genFloat64ArrList(values))
isValidFunc(genInt64ArrList(indices), genFloat32ArrList(values))
isValidFunc(genInt64ArrList(indices), genFloat64ArrList(values))
}

View File

@ -24,7 +24,9 @@ import (
"os"
"testing"
"github.com/apache/arrow/go/v12/arrow"
"github.com/apache/arrow/go/v12/arrow/array"
"github.com/apache/arrow/go/v12/arrow/memory"
"github.com/apache/arrow/go/v12/parquet"
"github.com/apache/arrow/go/v12/parquet/pqarrow"
"github.com/stretchr/testify/assert"
@ -357,6 +359,107 @@ func (s *ReaderSuite) runWithDefaultValue(dataType schemapb.DataType, elemType s
checkFn(res, 0, s.numRows)
}
func (s *ReaderSuite) runWithSparseVector(indicesType arrow.DataType, valuesType arrow.DataType) {
// milvus schema
schema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
{
FieldID: 100,
Name: "pk",
IsPrimaryKey: true,
DataType: schemapb.DataType_Int64,
AutoID: false,
},
{
FieldID: 101,
Name: "sparse",
DataType: schemapb.DataType_SparseFloatVector,
},
},
}
// arrow schema
arrowFields := make([]arrow.Field, 0)
arrowFields = append(arrowFields, arrow.Field{
Name: "pk",
Type: &arrow.Int64Type{},
Nullable: false,
Metadata: arrow.Metadata{},
})
sparseFields := []arrow.Field{
{Name: sparseVectorIndice, Type: arrow.ListOf(indicesType)},
{Name: sparseVectorValues, Type: arrow.ListOf(valuesType)},
}
arrowFields = append(arrowFields, arrow.Field{
Name: "sparse",
Type: arrow.StructOf(sparseFields...),
Nullable: false,
Metadata: arrow.Metadata{},
})
pqSchema := arrow.NewSchema(arrowFields, nil)
// parquet writer
filePath := fmt.Sprintf("/tmp/test_%d_sparse_reader.parquet", rand.Int())
defer os.Remove(filePath)
// prepare milvus data
insertData, err := testutil.CreateInsertData(schema, s.numRows, 0)
assert.NoError(s.T(), err)
// use a function here because the fw.Close() must be called before we read the parquet file
func() {
wf, err := os.OpenFile(filePath, os.O_RDWR|os.O_CREATE, 0o666)
assert.NoError(s.T(), err)
fw, err := pqarrow.NewFileWriter(pqSchema, wf, parquet.NewWriterProperties(parquet.WithMaxRowGroupLength(int64(s.numRows))), pqarrow.DefaultWriterProps())
assert.NoError(s.T(), err)
defer fw.Close()
// prepare parquet data
arrowColumns := make([]arrow.Array, 0, len(schema.Fields))
mem := memory.NewGoAllocator()
builder := array.NewInt64Builder(mem)
int64Data := insertData.Data[schema.Fields[0].FieldID].(*storage.Int64FieldData).Data
validData := insertData.Data[schema.Fields[0].FieldID].(*storage.Int64FieldData).ValidData
builder.AppendValues(int64Data, validData)
arrowColumns = append(arrowColumns, builder.NewInt64Array())
contents := insertData.Data[schema.Fields[1].FieldID].(*storage.SparseFloatVectorFieldData).GetContents()
arr, err := testutil.BuildSparseVectorData(mem, contents, arrowFields[1].Type)
assert.NoError(s.T(), err)
arrowColumns = append(arrowColumns, arr)
// write parquet
recordBatch := array.NewRecord(pqSchema, arrowColumns, int64(s.numRows))
err = fw.Write(recordBatch)
assert.NoError(s.T(), err)
}()
// read parquet
ctx := context.Background()
f := storage.NewChunkManagerFactory("local", storage.RootPath("/tmp/milvus_test/test_parquet_reader/"))
cm, err := f.NewPersistentStorageChunkManager(ctx)
assert.NoError(s.T(), err)
reader, err := NewReader(ctx, cm, schema, filePath, 64*1024*1024)
assert.NoError(s.T(), err)
checkFn := func(actualInsertData *storage.InsertData, offsetBegin, expectRows int) {
expectInsertData := insertData
for fieldID, data := range actualInsertData.Data {
s.Equal(expectRows, data.RowNum())
for i := 0; i < expectRows; i++ {
expect := expectInsertData.Data[fieldID].GetRow(i + offsetBegin)
actual := data.GetRow(i)
s.Equal(expect, actual)
}
}
}
res, err := reader.Read()
assert.NoError(s.T(), err)
checkFn(res, 0, s.numRows)
}
func (s *ReaderSuite) TestReadScalarFieldsWithDefaultValue() {
s.runWithDefaultValue(schemapb.DataType_Bool, schemapb.DataType_None, true, 0)
s.runWithDefaultValue(schemapb.DataType_Int8, schemapb.DataType_None, true, 0)
@ -493,10 +596,22 @@ func (s *ReaderSuite) TestVector() {
s.run(schemapb.DataType_Int32, schemapb.DataType_None, false, 0)
s.vecDataType = schemapb.DataType_BFloat16Vector
s.run(schemapb.DataType_Int32, schemapb.DataType_None, false, 0)
// this test case only test parsing sparse vector from JSON-format string
s.vecDataType = schemapb.DataType_SparseFloatVector
s.run(schemapb.DataType_Int32, schemapb.DataType_None, false, 0)
}
func (s *ReaderSuite) TestSparseVector() {
s.runWithSparseVector(arrow.PrimitiveTypes.Int32, arrow.PrimitiveTypes.Float32)
s.runWithSparseVector(arrow.PrimitiveTypes.Int32, arrow.PrimitiveTypes.Float64)
s.runWithSparseVector(arrow.PrimitiveTypes.Uint32, arrow.PrimitiveTypes.Float32)
s.runWithSparseVector(arrow.PrimitiveTypes.Uint32, arrow.PrimitiveTypes.Float64)
s.runWithSparseVector(arrow.PrimitiveTypes.Int64, arrow.PrimitiveTypes.Float32)
s.runWithSparseVector(arrow.PrimitiveTypes.Int64, arrow.PrimitiveTypes.Float64)
s.runWithSparseVector(arrow.PrimitiveTypes.Uint64, arrow.PrimitiveTypes.Float32)
s.runWithSparseVector(arrow.PrimitiveTypes.Uint64, arrow.PrimitiveTypes.Float64)
}
func TestUtil(t *testing.T) {
suite.Run(t, new(ReaderSuite))
}

View File

@ -29,6 +29,11 @@ import (
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
)
const (
sparseVectorIndice = "indices"
sparseVectorValues = "values"
)
func WrapTypeErr(expect string, actual string, field *schemapb.FieldSchema) error {
return merr.WrapErrImportFailed(
fmt.Sprintf("expect '%s' type for field '%s', but got '%s' type",
@ -146,11 +151,49 @@ func isArrowDataTypeConvertible(src arrow.DataType, dst arrow.DataType, field *s
case arrow.NULL:
// if nullable==true or has set default_value, can use null type
return field.GetNullable() || field.GetDefaultValue() != nil
case arrow.STRUCT:
if field.GetDataType() == schemapb.DataType_SparseFloatVector {
valid, _ := IsValidSparseVectorSchema(src)
return valid
}
return false
default:
return false
}
}
// This method returns two booleans
// The first boolean value means the arrowType is a valid sparse vector schema
// The second boolean value: true means the sparse vector is stored as JSON-format string,
// false means the sparse vector is stored as parquet struct
func IsValidSparseVectorSchema(arrowType arrow.DataType) (bool, bool) {
arrowID := arrowType.ID()
if arrowID == arrow.STRUCT {
arrType := arrowType.(*arrow.StructType)
indicesType, ok1 := arrType.FieldByName(sparseVectorIndice)
valuesType, ok2 := arrType.FieldByName(sparseVectorValues)
if !ok1 || !ok2 {
return false, false
}
// indices can be uint32 list or int64 list
// values can be float32 list or float64 list
isValidType := func(finger string, expectedType arrow.DataType) bool {
return finger == arrow.ListOf(expectedType).Fingerprint()
}
indicesFinger := indicesType.Type.Fingerprint()
valuesFinger := valuesType.Type.Fingerprint()
indicesTypeIsOK := (isValidType(indicesFinger, arrow.PrimitiveTypes.Int32) ||
isValidType(indicesFinger, arrow.PrimitiveTypes.Uint32) ||
isValidType(indicesFinger, arrow.PrimitiveTypes.Int64) ||
isValidType(indicesFinger, arrow.PrimitiveTypes.Uint64))
valuesTypeIsOK := (isValidType(valuesFinger, arrow.PrimitiveTypes.Float32) ||
isValidType(valuesFinger, arrow.PrimitiveTypes.Float64))
return indicesTypeIsOK && valuesTypeIsOK, false
}
return arrowID == arrow.STRING, true
}
func convertToArrowDataType(field *schemapb.FieldSchema, isArray bool) (arrow.DataType, error) {
dataType := field.GetDataType()
if isArray {

View File

@ -2,6 +2,7 @@ package testutil
import (
"fmt"
"math"
"math/rand"
"strconv"
@ -277,6 +278,118 @@ func CreateFieldWithDefaultValue(dataType schemapb.DataType, id int64, nullable
return field, nil
}
func BuildSparseVectorData(mem *memory.GoAllocator, contents [][]byte, arrowType arrow.DataType) (arrow.Array, error) {
if arrowType == nil || arrowType.ID() == arrow.STRING {
// build sparse vector as JSON-format string
builder := array.NewStringBuilder(mem)
rows := len(contents)
jsonBytesData := make([][]byte, 0)
for i := 0; i < rows; i++ {
rowVecData := contents[i]
mapData := typeutil.SparseFloatBytesToMap(rowVecData)
// convert to JSON format
jsonBytes, err := json.Marshal(mapData)
if err != nil {
return nil, err
}
jsonBytesData = append(jsonBytesData, jsonBytes)
}
builder.AppendValues(lo.Map(jsonBytesData, func(bs []byte, _ int) string {
return string(bs)
}), nil)
return builder.NewStringArray(), nil
} else if arrowType.ID() == arrow.STRUCT {
// build sparse vector as parquet struct
stType, _ := arrowType.(*arrow.StructType)
indicesField, ok1 := stType.FieldByName("indices")
valuesField, ok2 := stType.FieldByName("values")
if !ok1 || !ok2 {
return nil, merr.WrapErrParameterInvalidMsg("Indices type or values type is missed for sparse vector")
}
indicesList, ok1 := indicesField.Type.(*arrow.ListType)
valuesList, ok2 := valuesField.Type.(*arrow.ListType)
if !ok1 || !ok2 {
return nil, merr.WrapErrParameterInvalidMsg("Indices type and values type of sparse vector should be list")
}
indexType := indicesList.Elem().ID()
valueType := valuesList.Elem().ID()
fields := []arrow.Field{indicesField, valuesField}
structType := arrow.StructOf(fields...)
builder := array.NewStructBuilder(mem, structType)
indicesBuilder := builder.FieldBuilder(0).(*array.ListBuilder)
valuesBuilder := builder.FieldBuilder(1).(*array.ListBuilder)
// The array.Uint32Builder/array.Int64Builder/array.Float32Builder/array.Float64Builder
// are derived from array.Builder, but array.Builder doesn't have Append() interface
// To call array.Uint32Builder.Value(uint32), we need to explicitly cast the indicesBuilder.ValueBuilder()
// to array.Uint32Builder
// So, we declare two methods here to avoid type casting in the "for" loop
type AppendIndex func(index uint32)
type AppendValue func(value float32)
var appendIndexFunc AppendIndex
switch indexType {
case arrow.INT32:
indicesArrayBuilder := indicesBuilder.ValueBuilder().(*array.Int32Builder)
appendIndexFunc = func(index uint32) {
indicesArrayBuilder.Append((int32)(index))
}
case arrow.UINT32:
indicesArrayBuilder := indicesBuilder.ValueBuilder().(*array.Uint32Builder)
appendIndexFunc = func(index uint32) {
indicesArrayBuilder.Append(index)
}
case arrow.INT64:
indicesArrayBuilder := indicesBuilder.ValueBuilder().(*array.Int64Builder)
appendIndexFunc = func(index uint32) {
indicesArrayBuilder.Append((int64)(index))
}
case arrow.UINT64:
indicesArrayBuilder := indicesBuilder.ValueBuilder().(*array.Uint64Builder)
appendIndexFunc = func(index uint32) {
indicesArrayBuilder.Append((uint64)(index))
}
default:
msg := fmt.Sprintf("Not able to write this type (%s) for sparse vector index", indexType.String())
return nil, merr.WrapErrImportFailed(msg)
}
var appendValueFunc AppendValue
switch valueType {
case arrow.FLOAT32:
valuesArrayBuilder := valuesBuilder.ValueBuilder().(*array.Float32Builder)
appendValueFunc = func(value float32) {
valuesArrayBuilder.Append(value)
}
case arrow.FLOAT64:
valuesArrayBuilder := valuesBuilder.ValueBuilder().(*array.Float64Builder)
appendValueFunc = func(value float32) {
valuesArrayBuilder.Append((float64)(value))
}
default:
msg := fmt.Sprintf("Not able to write this type (%s) for sparse vector index", indexType.String())
return nil, merr.WrapErrImportFailed(msg)
}
for i := 0; i < len(contents); i++ {
builder.Append(true)
indicesBuilder.Append(true)
valuesBuilder.Append(true)
rowVecData := contents[i]
elemCount := len(rowVecData) / 8
for j := 0; j < elemCount; j++ {
appendIndexFunc(common.Endian.Uint32(rowVecData[j*8:]))
appendValueFunc(math.Float32frombits(common.Endian.Uint32(rowVecData[j*8+4:])))
}
}
return builder.NewStructArray(), nil
}
return nil, merr.WrapErrParameterInvalidMsg("Invalid arrow data type for sparse vector")
}
func BuildArrayData(schema *schemapb.CollectionSchema, insertData *storage.InsertData, useNullType bool) ([]arrow.Array, error) {
mem := memory.NewGoAllocator()
columns := make([]arrow.Array, 0, len(schema.Fields))
@ -401,24 +514,12 @@ func BuildArrayData(schema *schemapb.CollectionSchema, insertData *storage.Inser
builder.AppendValues(offsets, valid)
columns = append(columns, builder.NewListArray())
case schemapb.DataType_SparseFloatVector:
builder := array.NewStringBuilder(mem)
contents := insertData.Data[fieldID].(*storage.SparseFloatVectorFieldData).GetContents()
rows := len(contents)
jsonBytesData := make([][]byte, 0)
for i := 0; i < rows; i++ {
rowVecData := contents[i]
mapData := typeutil.SparseFloatBytesToMap(rowVecData)
// convert to JSON format
jsonBytes, err := json.Marshal(mapData)
if err != nil {
return nil, err
}
jsonBytesData = append(jsonBytesData, jsonBytes)
arr, err := BuildSparseVectorData(mem, contents, nil)
if err != nil {
return nil, err
}
builder.AppendValues(lo.Map(jsonBytesData, func(bs []byte, _ int) string {
return string(bs)
}), nil)
columns = append(columns, builder.NewStringArray())
columns = append(columns, arr)
case schemapb.DataType_JSON:
builder := array.NewStringBuilder(mem)
jsonData := insertData.Data[fieldID].(*storage.JSONFieldData).Data