Merge remote-tracking branch 'official/0.6.0' into issue-548

This commit is contained in:
xiaojun.lin 2019-11-30 18:04:22 +08:00
commit 6b84ec5f79
577 changed files with 100359 additions and 532 deletions

View File

@ -1,7 +1,7 @@
---
name: "\U0001F41B Bug report"
about: Create a bug report to help us improve Milvus
title: "[BUG]"
title: ''
labels: ''
assignees: ''

View File

@ -1,7 +1,7 @@
---
name: "\U0001F4DD Documentation request"
about: Report incorrect or needed documentation
title: "[DOC]"
title: ''
labels: ''
assignees: ''

View File

@ -1,7 +1,7 @@
---
name: "\U0001F680 Feature request"
about: Suggest an idea for Milvus
title: "[FEATURE]"
title: ''
labels: ''
assignees: ''

View File

@ -1,7 +1,7 @@
---
name: "\U0001F914 General question"
about: Ask a general question about Milvus
title: "[QUESTION]"
title: ''
labels: ''
assignees: ''

View File

@ -21,13 +21,26 @@ Please mark all change in change log and use the ticket from JIRA.
- \#440 - Server cannot startup with gpu_resource_config.enable=false in GPU version
- \#458 - Index data is not compatible between 0.5 and 0.6
- \#465 - Server hang caused by searching with nsg index
- \#485 - Increase code coverage rate
- \#486 - gpu no usage during index building
- \#497 - CPU-version search performance decreased
- \#504 - The code coverage rate of core/src/scheduler/optimizer is too low
- \#509 - IVF_PQ index build trapped into dead loop caused by invalid params
- \#513 - Unittest DELETE_BY_RANGE sometimes failed
- \#523 - Erase file data from cache once the file is marked as deleted
- \#527 - faiss benchmark not compatible with faiss 1.6.0
- \#530 - BuildIndex stop when do build index and search simultaneously
- \#532 - assigin value to `table_name` from confest shell
- \#533 - NSG build failed with MetricType Inner Product
- \#543 - client raise exception in shards when search results is empty
- \#545 - Avoid dead circle of build index thread when error occurs
- \#547 - NSG build failed using GPU-edition if set gpu_enable false
- \#548 - NSG search accuracy is too low
- \#552 - Server down during building index_type: IVF_PQ using GPU-edition
- \#561 - Milvus server should report exception/error message or terminate on mysql metadata backend error
- \#599 - Build index log is incorrect
- \#602 - Optimizer specify wrong gpu_id
- \#606 - No log generated during building index with CPU
## Feature
- \#12 - Pure CPU version for Milvus
@ -36,25 +49,32 @@ Please mark all change in change log and use the ticket from JIRA.
- \#226 - Experimental shards middleware for Milvus
- \#227 - Support new index types SPTAG-KDT and SPTAG-BKT
- \#346 - Support build index with multiple gpu
- \#420 - Update shards merge part to match v0.5.3
- \#488 - Add log in scheduler/optimizer
- \#502 - C++ SDK support IVFPQ and SPTAG
- \#560 - Add version in server config file
- \#605 - Print more messages when server start
## Improvement
- \#255 - Add ivfsq8 test report detailed version
- \#260 - C++ SDK README
- \#266 - Rpc request source code refactor
- \#274 - Logger the time cost during preloading data
- \#275 - Rename C++ SDK IndexType
- \#284 - Change C++ SDK to shared library
- \#306 - Use int64 for all config integer
- \#310 - Add Q&A for 'protocol https not supported or disable in libcurl' issue
- \#314 - add Find FAISS in CMake
- \#322 - Add option to enable / disable prometheus
- \#354 - Build migration scripts into milvus docker image
- \#358 - Add more information in build.sh and install.md
- \#404 - Add virtual method Init() in Pass abstract class
- \#409 - Add a Fallback pass in optimizer
- \#433 - C++ SDK query result is not easy to use
- \#449 - Add ShowPartitions example for C++ SDK
- \#470 - Small raw files should not be build index
- \#584 - Intergrate internal FAISS
- \#611 - Remove MILVUS_CPU_VERSION
## Task

View File

@ -69,6 +69,8 @@ Below is a list of Milvus contributors. We greatly appreciate your contributions
- [Milvus test reports](https://github.com/milvus-io/milvus/tree/master/docs)
- [Milvus FAQ](https://www.milvus.io/docs/en/faq/operational_faq/)
- [Milvus Medium](https://medium.com/@milvusio)
- [Milvus CSDN](https://zilliz.blog.csdn.net/)
@ -79,4 +81,4 @@ Below is a list of Milvus contributors. We greatly appreciate your contributions
## License
[Apache License 2.0](LICENSE)
[Apache License 2.0](LICENSE)

View File

@ -69,6 +69,8 @@ Milvus 提供稳定的 [Python](https://github.com/milvus-io/pymilvus)、[Java](
- [Milvus 测试报告](https://github.com/milvus-io/milvus/tree/master/docs)
- [Milvus 常见问题](https://www.milvus.io/docs/zh-CN/faq/operational_faq/)
- [Milvus Medium](https://medium.com/@milvusio)
- [Milvus CSDN](https://zilliz.blog.csdn.net/)

View File

@ -61,6 +61,8 @@ C++サンプルコードを実行するために、次のコマンドをつか
- [Milvus テストレポート](https://github.com/milvus-io/milvus/tree/master/docs)
- [Milvusのよくある質問](https://www.milvus.io/docs/en/faq/operational_faq/)
- [Milvus Medium](https://medium.com/@milvusio)
- [Milvus CSDN](https://zilliz.blog.csdn.net/)
@ -72,4 +74,4 @@ C++サンプルコードを実行するために、次のコマンドをつか
## ライセンス
[Apache 2.0ライセンス](LICENSE)
[Apache 2.0ライセンス](LICENSE)

View File

@ -17,7 +17,7 @@ pipeline {
}
parameters{
choice choices: ['Release', 'Debug'], description: '', name: 'BUILD_TYPE'
choice choices: ['Release', 'Debug'], description: 'Build Type', name: 'BUILD_TYPE'
string defaultValue: 'registry.zilliz.com', description: 'DOCKER REGISTRY URL', name: 'DOKCER_REGISTRY_URL', trim: true
string defaultValue: 'ba070c98-c8cc-4f7c-b657-897715f359fc', description: 'DOCKER CREDENTIALS ID', name: 'DOCKER_CREDENTIALS_ID', trim: true
string defaultValue: 'http://192.168.1.202/artifactory/milvus', description: 'JFROG ARTFACTORY URL', name: 'JFROG_ARTFACTORY_URL', trim: true
@ -27,9 +27,8 @@ pipeline {
environment {
PROJECT_NAME = "milvus"
LOWER_BUILD_TYPE = params.BUILD_TYPE.toLowerCase()
SEMVER = "${BRANCH_NAME}"
JOBNAMES = env.JOB_NAME.split('/')
PIPELINE_NAME = "${JOBNAMES[0]}"
SEMVER = "${BRANCH_NAME.contains('/') ? BRANCH_NAME.substring(BRANCH_NAME.lastIndexOf('/') + 1) : BRANCH_NAME}"
PIPELINE_NAME = "${env.JOB_NAME.contains('/') ? env.JOB_NAME.getAt(0..(env.JOB_NAME.indexOf('/') - 1)) : env.JOB_NAME}"
}
stages {
@ -102,7 +101,7 @@ pipeline {
stages {
stage('Publish') {
steps {
container('publish-images'){
container('publish-images') {
script {
load "${env.WORKSPACE}/ci/jenkins/step/publishImages.groovy"
}

View File

@ -0,0 +1,477 @@
#!/usr/bin/env groovy
pipeline {
agent none
options {
timestamps()
}
parameters{
choice choices: ['Release', 'Debug'], description: 'Build Type', name: 'BUILD_TYPE'
string defaultValue: 'registry.zilliz.com', description: 'DOCKER REGISTRY URL', name: 'DOKCER_REGISTRY_URL', trim: true
string defaultValue: 'a54e38ef-c424-4ea9-9224-b25fc20e3924', description: 'DOCKER CREDENTIALS ID', name: 'DOCKER_CREDENTIALS_ID', trim: true
string defaultValue: 'http://192.168.1.201/artifactory/milvus', description: 'JFROG ARTFACTORY URL', name: 'JFROG_ARTFACTORY_URL', trim: true
string defaultValue: '76fd48ab-2b8e-4eed-834d-2eefd23bb3a6', description: 'JFROG CREDENTIALS ID', name: 'JFROG_CREDENTIALS_ID', trim: true
}
environment {
PROJECT_NAME = "milvus"
LOWER_BUILD_TYPE = params.BUILD_TYPE.toLowerCase()
SEMVER = "${BRANCH_NAME.contains('/') ? BRANCH_NAME.substring(BRANCH_NAME.lastIndexOf('/') + 1) : BRANCH_NAME}"
PIPELINE_NAME = "${env.JOB_NAME.contains('/') ? env.JOB_NAME.getAt(0..(env.JOB_NAME.indexOf('/') - 1)) : env.JOB_NAME}"
}
stages {
stage("Ubuntu 18.04 x86_64") {
environment {
OS_NAME = "ubuntu18.04"
CPU_ARCH = "amd64"
}
parallel {
stage ("GPU Version") {
environment {
BINRARY_VERSION = "gpu"
PACKAGE_VERSION = VersionNumber([
versionNumberString : '${SEMVER}-gpu-${OS_NAME}-${CPU_ARCH}-${LOWER_BUILD_TYPE}-${BUILD_DATE_FORMATTED, "yyyyMMdd"}-${BUILDS_TODAY}'
]);
DOCKER_VERSION = "${SEMVER}-gpu-${OS_NAME}-${LOWER_BUILD_TYPE}"
}
stages {
stage("Run Build") {
agent {
kubernetes {
label "${env.BINRARY_VERSION}-build"
defaultContainer 'jnlp'
yaml """
apiVersion: v1
kind: Pod
metadata:
name: milvus-gpu-build-env
labels:
app: milvus
componet: gpu-build-env
spec:
containers:
- name: milvus-gpu-build-env
image: registry.zilliz.com/milvus/milvus-gpu-build-env:v0.6.0-ubuntu18.04
env:
- name: POD_IP
valueFrom:
fieldRef:
fieldPath: status.podIP
- name: BUILD_ENV_IMAGE_ID
value: "da9023b0f858f072672f86483a869aa87e90a5140864f89e5a012ec766d96dea"
command:
- cat
tty: true
resources:
limits:
memory: "24Gi"
cpu: "8.0"
nvidia.com/gpu: 1
requests:
memory: "16Gi"
cpu: "4.0"
- name: milvus-mysql
image: mysql:5.6
env:
- name: MYSQL_ROOT_PASSWORD
value: 123456
ports:
- containerPort: 3306
name: mysql
"""
}
}
stages {
stage('Build') {
steps {
container("milvus-${env.BINRARY_VERSION}-build-env") {
script {
load "${env.WORKSPACE}/ci/jenkins/step/build.groovy"
}
}
}
}
stage('Code Coverage') {
steps {
container("milvus-${env.BINRARY_VERSION}-build-env") {
script {
load "${env.WORKSPACE}/ci/jenkins/step/internalCoverage.groovy"
}
}
}
}
stage('Upload Package') {
steps {
container("milvus-${env.BINRARY_VERSION}-build-env") {
script {
load "${env.WORKSPACE}/ci/jenkins/step/package.groovy"
}
}
}
}
}
}
stage("Publish docker images") {
agent {
kubernetes {
label "${env.BINRARY_VERSION}-publish"
defaultContainer 'jnlp'
yaml """
apiVersion: v1
kind: Pod
metadata:
labels:
app: publish
componet: docker
spec:
containers:
- name: publish-images
image: registry.zilliz.com/library/docker:v1.0.0
securityContext:
privileged: true
command:
- cat
tty: true
volumeMounts:
- name: docker-sock
mountPath: /var/run/docker.sock
volumes:
- name: docker-sock
hostPath:
path: /var/run/docker.sock
"""
}
}
stages {
stage('Publish') {
steps {
container('publish-images') {
script {
load "${env.WORKSPACE}/ci/jenkins/step/publishImages.groovy"
}
}
}
}
}
}
stage("Deploy to Development") {
environment {
FROMAT_SEMVER = "${env.SEMVER}".replaceAll("\\.", "-")
HELM_RELEASE_NAME = "${env.PIPELINE_NAME}-${env.FROMAT_SEMVER}-${env.BUILD_NUMBER}-single-${env.BINRARY_VERSION}".toLowerCase()
}
agent {
kubernetes {
label "${env.BINRARY_VERSION}-dev-test"
defaultContainer 'jnlp'
yaml """
apiVersion: v1
kind: Pod
metadata:
labels:
app: milvus
componet: test-env
spec:
containers:
- name: milvus-test-env
image: registry.zilliz.com/milvus/milvus-test-env:v0.1
command:
- cat
tty: true
volumeMounts:
- name: kubeconf
mountPath: /root/.kube/
readOnly: true
volumes:
- name: kubeconf
secret:
secretName: test-cluster-config
"""
}
}
stages {
stage("Deploy to Dev") {
steps {
container('milvus-test-env') {
script {
load "${env.WORKSPACE}/ci/jenkins/step/deploySingle2Dev.groovy"
}
}
}
}
stage("Dev Test") {
steps {
container('milvus-test-env') {
script {
boolean isNightlyTest = isTimeTriggeredBuild()
if (isNightlyTest) {
load "${env.WORKSPACE}/ci/jenkins/step/singleDevNightlyTest.groovy"
} else {
load "${env.WORKSPACE}/ci/jenkins/step/singleDevTest.groovy"
}
}
}
}
}
stage ("Cleanup Dev") {
steps {
container('milvus-test-env') {
script {
load "${env.WORKSPACE}/ci/jenkins/step/cleanupSingleDev.groovy"
}
}
}
}
}
post {
unsuccessful {
container('milvus-test-env') {
script {
load "${env.WORKSPACE}/ci/jenkins/step/cleanupSingleDev.groovy"
}
}
}
}
}
}
}
stage ("CPU Version") {
environment {
BINRARY_VERSION = "cpu"
PACKAGE_VERSION = VersionNumber([
versionNumberString : '${SEMVER}-cpu-${OS_NAME}-${CPU_ARCH}-${LOWER_BUILD_TYPE}-${BUILD_DATE_FORMATTED, "yyyyMMdd"}-${BUILDS_TODAY}'
]);
DOCKER_VERSION = "${SEMVER}-cpu-${OS_NAME}-${LOWER_BUILD_TYPE}"
}
stages {
stage("Run Build") {
agent {
kubernetes {
label "${env.BINRARY_VERSION}-build"
defaultContainer 'jnlp'
yaml """
apiVersion: v1
kind: Pod
metadata:
name: milvus-cpu-build-env
labels:
app: milvus
componet: cpu-build-env
spec:
containers:
- name: milvus-cpu-build-env
image: registry.zilliz.com/milvus/milvus-cpu-build-env:v0.6.0-ubuntu18.04
env:
- name: POD_IP
valueFrom:
fieldRef:
fieldPath: status.podIP
- name: BUILD_ENV_IMAGE_ID
value: "23476391bec80c64f10d44a6370c73c71f011a6b95114b10ff82a60e771e11c7"
command:
- cat
tty: true
resources:
limits:
memory: "24Gi"
cpu: "8.0"
requests:
memory: "16Gi"
cpu: "4.0"
- name: milvus-mysql
image: mysql:5.6
env:
- name: MYSQL_ROOT_PASSWORD
value: 123456
ports:
- containerPort: 3306
name: mysql
"""
}
}
stages {
stage('Build') {
steps {
container("milvus-${env.BINRARY_VERSION}-build-env") {
script {
load "${env.WORKSPACE}/ci/jenkins/step/build.groovy"
}
}
}
}
stage('Code Coverage') {
steps {
container("milvus-${env.BINRARY_VERSION}-build-env") {
script {
load "${env.WORKSPACE}/ci/jenkins/step/internalCoverage.groovy"
}
}
}
}
stage('Upload Package') {
steps {
container("milvus-${env.BINRARY_VERSION}-build-env") {
script {
load "${env.WORKSPACE}/ci/jenkins/step/package.groovy"
}
}
}
}
}
}
stage("Publish docker images") {
agent {
kubernetes {
label "${env.BINRARY_VERSION}-publish"
defaultContainer 'jnlp'
yaml """
apiVersion: v1
kind: Pod
metadata:
labels:
app: publish
componet: docker
spec:
containers:
- name: publish-images
image: registry.zilliz.com/library/docker:v1.0.0
securityContext:
privileged: true
command:
- cat
tty: true
volumeMounts:
- name: docker-sock
mountPath: /var/run/docker.sock
volumes:
- name: docker-sock
hostPath:
path: /var/run/docker.sock
"""
}
}
stages {
stage('Publish') {
steps {
container('publish-images'){
script {
load "${env.WORKSPACE}/ci/jenkins/step/publishImages.groovy"
}
}
}
}
}
}
stage("Deploy to Development") {
environment {
FROMAT_SEMVER = "${env.SEMVER}".replaceAll("\\.", "-")
HELM_RELEASE_NAME = "${env.PIPELINE_NAME}-${env.FROMAT_SEMVER}-${env.BUILD_NUMBER}-single-${env.BINRARY_VERSION}".toLowerCase()
}
agent {
kubernetes {
label "${env.BINRARY_VERSION}-dev-test"
defaultContainer 'jnlp'
yaml """
apiVersion: v1
kind: Pod
metadata:
labels:
app: milvus
componet: test-env
spec:
containers:
- name: milvus-test-env
image: registry.zilliz.com/milvus/milvus-test-env:v0.1
command:
- cat
tty: true
volumeMounts:
- name: kubeconf
mountPath: /root/.kube/
readOnly: true
volumes:
- name: kubeconf
secret:
secretName: test-cluster-config
"""
}
}
stages {
stage("Deploy to Dev") {
steps {
container('milvus-test-env') {
script {
load "${env.WORKSPACE}/ci/jenkins/step/deploySingle2Dev.groovy"
}
}
}
}
stage("Dev Test") {
steps {
container('milvus-test-env') {
script {
boolean isNightlyTest = isTimeTriggeredBuild()
if (isNightlyTest) {
load "${env.WORKSPACE}/ci/jenkins/step/singleDevNightlyTest.groovy"
} else {
load "${env.WORKSPACE}/ci/jenkins/step/singleDevTest.groovy"
}
}
}
}
}
stage ("Cleanup Dev") {
steps {
container('milvus-test-env') {
script {
load "${env.WORKSPACE}/ci/jenkins/step/cleanupSingleDev.groovy"
}
}
}
}
}
post {
unsuccessful {
container('milvus-test-env') {
script {
load "${env.WORKSPACE}/ci/jenkins/step/cleanupSingleDev.groovy"
}
}
}
}
}
}
}
}
}
}
}
boolean isTimeTriggeredBuild() {
if (currentBuild.getBuildCauses('hudson.triggers.TimerTrigger$TimerTriggerCause').size() != 0) {
return true
}
return false
}

View File

@ -21,10 +21,10 @@ spec:
tty: true
resources:
limits:
memory: "32Gi"
memory: "12Gi"
cpu: "8.0"
requests:
memory: "16Gi"
memory: "8Gi"
cpu: "4.0"
- name: milvus-mysql
image: mysql:5.6

View File

@ -21,11 +21,11 @@ spec:
tty: true
resources:
limits:
memory: "32Gi"
memory: "12Gi"
cpu: "8.0"
nvidia.com/gpu: 1
requests:
memory: "16Gi"
memory: "8Gi"
cpu: "4.0"
- name: milvus-mysql
image: mysql:5.6

View File

@ -3,9 +3,9 @@ timeout(time: 60, unit: 'MINUTES') {
withCredentials([usernamePassword(credentialsId: "${params.JFROG_CREDENTIALS_ID}", usernameVariable: 'USERNAME', passwordVariable: 'PASSWORD')]) {
def checkResult = sh(script: "./check_ccache.sh -l ${params.JFROG_ARTFACTORY_URL}/ccache", returnStatus: true)
if ("${env.BINRARY_VERSION}" == "gpu") {
sh ". ./before-install.sh && ./build.sh -t ${params.BUILD_TYPE} -o /opt/milvus -l -g -u -c"
sh ". ./before-install.sh && ./build.sh -t ${params.BUILD_TYPE} -o /opt/milvus -l -g -x -u -c"
} else {
sh ". ./before-install.sh && ./build.sh -t ${params.BUILD_TYPE} -o /opt/milvus -l -m -u -c"
sh ". ./before-install.sh && ./build.sh -t ${params.BUILD_TYPE} -o /opt/milvus -l -u -c"
}
sh "./update_ccache.sh -l ${params.JFROG_ARTFACTORY_URL}/ccache -u ${USERNAME} -p ${PASSWORD}"
}

View File

@ -0,0 +1,6 @@
timeout(time: 30, unit: 'MINUTES') {
dir ("ci/scripts") {
sh "./coverage.sh -o /opt/milvus -u root -p 123456 -t \$POD_IP"
}
}

View File

@ -41,12 +41,12 @@ if [[ -z "${ARTIFACTORY_URL}" || "${ARTIFACTORY_URL}" == "" ]];then
exit 1
fi
for BRANCH_NAME in ${BRANCH_NAMES}
do
echo "fetching ${BRANCH_NAME}/ccache-${OS_NAME}-${CODE_NAME}-${BUILD_ENV_DOCKER_IMAGE_ID}.tar.gz"
wget -q --method HEAD "${ARTIFACTORY_URL}/${BRANCH_NAME}/ccache-${OS_NAME}-${CODE_NAME}-${BUILD_ENV_DOCKER_IMAGE_ID}.tar.gz"
check_ccache() {
BRANCH=$1
echo "fetching ${BRANCH}/ccache-${OS_NAME}-${CODE_NAME}-${BUILD_ENV_DOCKER_IMAGE_ID}.tar.gz"
wget -q --method HEAD "${ARTIFACTORY_URL}/${BRANCH}/ccache-${OS_NAME}-${CODE_NAME}-${BUILD_ENV_DOCKER_IMAGE_ID}.tar.gz"
if [[ $? == 0 ]];then
wget "${ARTIFACTORY_URL}/${BRANCH_NAME}/ccache-${OS_NAME}-${CODE_NAME}-${BUILD_ENV_DOCKER_IMAGE_ID}.tar.gz" && \
wget -q "${ARTIFACTORY_URL}/${BRANCH}/ccache-${OS_NAME}-${CODE_NAME}-${BUILD_ENV_DOCKER_IMAGE_ID}.tar.gz" && \
mkdir -p ${CCACHE_DIRECTORY} && \
tar zxf ccache-${OS_NAME}-${CODE_NAME}-${BUILD_ENV_DOCKER_IMAGE_ID}.tar.gz -C ${CCACHE_DIRECTORY} && \
rm ccache-${OS_NAME}-${CODE_NAME}-${BUILD_ENV_DOCKER_IMAGE_ID}.tar.gz
@ -55,6 +55,18 @@ do
exit 0
fi
fi
}
if [[ -n "${CHANGE_BRANCH}" && "${BRANCH_NAME}" =~ "PR-" ]];then
check_ccache ${CHANGE_BRANCH}
check_ccache ${BRANCH_NAME}
fi
for CURRENT_BRANCH in ${BRANCH_NAMES}
do
if [[ "${CURRENT_BRANCH}" != "HEAD" ]];then
check_ccache ${CURRENT_BRANCH}
fi
done
echo "could not download cache" && exit 1

View File

@ -54,14 +54,18 @@ fi
PACKAGE_FILE="ccache-${OS_NAME}-${CODE_NAME}-${BUILD_ENV_DOCKER_IMAGE_ID}.tar.gz"
REMOTE_PACKAGE_PATH="${ARTIFACTORY_URL}/${BRANCH_NAME}"
echo "Updating ccache package file: ${PACKAGE_FILE}"
tar zcf ./${PACKAGE_FILE} -C ${HOME}/.ccache .
echo "Uploading ccache package file ${PACKAGE_FILE} to ${REMOTE_PACKAGE_PATH}"
curl -u${ARTIFACTORY_USER}:${ARTIFACTORY_PASSWORD} -T ${PACKAGE_FILE} ${REMOTE_PACKAGE_PATH}/${PACKAGE_FILE}
if [[ $? == 0 ]];then
echo "Uploading ccache package file success !"
exit 0
else
echo "Uploading ccache package file fault !"
exit 1
ccache --show-stats
if [[ "${BRANCH_NAME}" != "HEAD" ]];then
echo "Updating ccache package file: ${PACKAGE_FILE}"
tar zcf ./${PACKAGE_FILE} -C ${HOME}/.ccache .
echo "Uploading ccache package file ${PACKAGE_FILE} to ${REMOTE_PACKAGE_PATH}"
curl -u${ARTIFACTORY_USER}:${ARTIFACTORY_PASSWORD} -T ${PACKAGE_FILE} ${REMOTE_PACKAGE_PATH}/${PACKAGE_FILE}
if [[ $? == 0 ]];then
echo "Uploading ccache package file success !"
exit 0
else
echo "Uploading ccache package file fault !"
exit 1
fi
fi

View File

@ -35,15 +35,15 @@ if (NOT DEFINED CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Choose the type of build.")
endif ()
set (GIT_BRANCH_NAME_REGEX "[0-9]+\\.[0-9]+\\.[0-9]")
set(GIT_BRANCH_NAME_REGEX "[0-9]+\\.[0-9]+\\.[0-9]")
MACRO(GET_GIT_BRANCH_NAME GIT_BRANCH_NAME)
execute_process(COMMAND sh "-c" "git log --decorate | head -n 1 | sed 's/.*(\\(.*\\))/\\1/' | sed 's/.*, //' | sed 's=[a-zA-Z]*\/==g'"
OUTPUT_VARIABLE ${GIT_BRANCH_NAME})
if(NOT GIT_BRANCH_NAME MATCHES "${GIT_BRANCH_NAME_REGEX}")
if (NOT GIT_BRANCH_NAME MATCHES "${GIT_BRANCH_NAME_REGEX}")
execute_process(COMMAND "git" rev-parse --abbrev-ref HEAD OUTPUT_VARIABLE ${GIT_BRANCH_NAME})
endif ()
if(NOT GIT_BRANCH_NAME MATCHES "${GIT_BRANCH_NAME_REGEX}")
if (NOT GIT_BRANCH_NAME MATCHES "${GIT_BRANCH_NAME_REGEX}")
execute_process(COMMAND "git" symbolic-ref --short -q HEAD HEAD OUTPUT_VARIABLE ${GIT_BRANCH_NAME})
endif ()
ENDMACRO(GET_GIT_BRANCH_NAME)
@ -79,7 +79,7 @@ if (MILVUS_VERSION_MAJOR STREQUAL ""
OR MILVUS_VERSION_PATCH STREQUAL "")
message(WARNING "Failed to determine Milvus version from git branch name")
set(MILVUS_VERSION "0.6.0")
endif()
endif ()
message(STATUS "Build version = ${MILVUS_VERSION}")
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/src/version.h.in ${CMAKE_CURRENT_SOURCE_DIR}/src/version.h @ONLY)
@ -141,7 +141,11 @@ if (MILVUS_USE_CCACHE)
endif (CCACHE_FOUND)
endif ()
set(MILVUS_CPU_VERSION false)
if (CUSTOMIZATION)
set(MILVUS_GPU_VERSION ON)
add_compile_definitions(CUSTOMIZATION)
endif ()
if (MILVUS_GPU_VERSION)
message(STATUS "Building Milvus GPU version")
add_compile_definitions("MILVUS_GPU_VERSION")
@ -150,8 +154,6 @@ if (MILVUS_GPU_VERSION)
set(CUDA_NVCC_FLAGS "${CUDA_NVCC_FLAGS} -Xcompiler -fPIC -std=c++11 -D_FORCE_INLINES --expt-extended-lambda")
else ()
message(STATUS "Building Milvus CPU version")
set(MILVUS_CPU_VERSION true)
add_compile_definitions("MILVUS_CPU_VERSION")
endif ()
if (MILVUS_WITH_PROMETHEUS)
@ -170,10 +172,6 @@ else ()
endif ()
endif ()
if (CUSTOMIZATION)
add_definitions(-DCUSTOMIZATION)
endif (CUSTOMIZATION)
config_summary()
add_subdirectory(src)
@ -187,7 +185,7 @@ endif ()
add_custom_target(Clean-All COMMAND ${CMAKE_BUILD_TOOL} clean)
if ("${MILVUS_DB_PATH}" STREQUAL "")
set(MILVUS_DB_PATH "/tmp/milvus")
set(MILVUS_DB_PATH "${CMAKE_INSTALL_PREFIX}")
endif ()
if (MILVUS_GPU_VERSION)
@ -204,6 +202,11 @@ install(DIRECTORY scripts/
GROUP_EXECUTE GROUP_READ
WORLD_EXECUTE WORLD_READ
FILES_MATCHING PATTERN "*.sh")
install(DIRECTORY scripts/migration
DESTINATION scripts
FILE_PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ
GROUP_EXECUTE GROUP_READ
WORLD_EXECUTE WORLD_READ)
install(FILES
conf/server_config.yaml
conf/log_config.conf

View File

@ -41,10 +41,12 @@ macro(define_option_string name description default)
endmacro()
#----------------------------------------------------------------------
set_option_category("GPU version")
set_option_category("Milvus Build Option")
define_option(MILVUS_GPU_VERSION "Build GPU version" OFF)
define_option(CUSTOMIZATION "Build with customized FAISS library" OFF)
#----------------------------------------------------------------------
set_option_category("Thirdparty")

View File

@ -1,5 +1,7 @@
# Default values are used when you make no changes to the following parameters.
version: 0.1 # config version
server_config:
address: 0.0.0.0 # milvus server ip address (IPv4)
port: 19530 # milvus server port, must in range [1025, 65534]

View File

@ -1,5 +1,7 @@
# Default values are used when you make no changes to the following parameters.
version: 0.1 # config version
server_config:
address: 0.0.0.0 # milvus server ip address (IPv4)
port: 19530 # milvus server port, must in range [1025, 65534]

View File

@ -99,8 +99,8 @@ Cache<ItemObj>::insert(const std::string& key, const ItemObj& item) {
std::lock_guard<std::mutex> lock(mutex_);
lru_.put(key, item);
SERVER_LOG_DEBUG << "Insert " << key << " size:" << item->Size() << " bytes into cache, usage: " << usage_
<< " bytes";
SERVER_LOG_DEBUG << "Insert " << key << " size: " << item->Size() << " bytes into cache, usage: " << usage_
<< " bytes," << " capacity: " << capacity_ << " bytes";
}
}
@ -115,7 +115,8 @@ Cache<ItemObj>::erase(const std::string& key) {
const ItemObj& old_item = lru_.get(key);
usage_ -= old_item->Size();
SERVER_LOG_DEBUG << "Erase " << key << " size: " << old_item->Size();
SERVER_LOG_DEBUG << "Erase " << key << " size: " << old_item->Size() << " bytes from cache, usage: " << usage_
<< " bytes," << " capacity: " << capacity_ << " bytes";
lru_.erase(key);
}

View File

@ -41,6 +41,7 @@
#include <iostream>
#include <set>
#include <thread>
#include <utility>
namespace milvus {
namespace engine {
@ -51,6 +52,8 @@ constexpr uint64_t METRIC_ACTION_INTERVAL = 1;
constexpr uint64_t COMPACT_ACTION_INTERVAL = 1;
constexpr uint64_t INDEX_ACTION_INTERVAL = 1;
constexpr uint64_t INDEX_FAILED_RETRY_TIME = 1;
static const Status SHUTDOWN_ERROR = Status(DB_ERROR, "Milsvus server is shutdown!");
void
@ -112,7 +115,7 @@ DBImpl::Stop() {
bg_timer_thread_.join();
if (options_.mode_ != DBOptions::MODE::CLUSTER_READONLY) {
meta_ptr_->CleanUp();
meta_ptr_->CleanUpShadowFiles();
}
// ENGINE_LOG_TRACE << "DB service stop";
@ -179,7 +182,7 @@ DBImpl::PreloadTable(const std::string& table_id) {
return SHUTDOWN_ERROR;
}
// get all table files from parent table
// step 1: get all table files from parent table
meta::DatesT dates;
std::vector<size_t> ids;
meta::TableFilesSchema files_array;
@ -188,7 +191,7 @@ DBImpl::PreloadTable(const std::string& table_id) {
return status;
}
// get files from partition tables
// step 2: get files from partition tables
std::vector<meta::TableSchema> partiton_array;
status = meta_ptr_->ShowPartitions(table_id, partiton_array);
for (auto& schema : partiton_array) {
@ -200,6 +203,10 @@ DBImpl::PreloadTable(const std::string& table_id) {
int64_t cache_usage = cache::CpuCacheMgr::GetInstance()->CacheUsage();
int64_t available_size = cache_total - cache_usage;
// step 3: load file one by one
ENGINE_LOG_DEBUG << "Begin pre-load table:" + table_id + ", totally " << files_array.size()
<< " files need to be pre-loaded";
TimeRecorderAuto rc("Pre-load table:" + table_id);
for (auto& file : files_array) {
ExecutionEnginePtr engine = EngineFactory::Build(file.dimension_, file.location_, (EngineType)file.engine_type_,
(MetricType)file.metric_type_, file.nlist_);
@ -210,10 +217,12 @@ DBImpl::PreloadTable(const std::string& table_id) {
size += engine->PhysicalSize();
if (size > available_size) {
ENGINE_LOG_DEBUG << "Pre-load canceled since cache almost full";
return Status(SERVER_CACHE_FULL, "Cache is full");
} else {
try {
// step 1: load index
std::string msg = "Pre-loaded file: " + file.file_id_ + " size: " + std::to_string(file.file_size_);
TimeRecorderAuto rc_1(msg);
engine->Load(true);
} catch (std::exception& ex) {
std::string msg = "Pre-load table encounter exception: " + std::string(ex.what());
@ -361,6 +370,7 @@ DBImpl::CreateIndex(const std::string& table_id, const TableIndex& index) {
WaitMergeFileFinish();
// step 4: wait and build index
status = CleanFailedIndexFileOfTable(table_id);
status = BuildTableIndexRecursively(table_id, index);
return status;
@ -777,11 +787,18 @@ DBImpl::BackgroundCompaction(std::set<std::string> table_ids) {
meta_ptr_->Archive();
int ttl = 5 * meta::M_SEC; // default: file will be deleted after 5 minutes
if (options_.mode_ == DBOptions::MODE::CLUSTER_WRITABLE) {
ttl = meta::D_SEC;
{
uint64_t ttl = 10 * meta::SECOND; // default: file data will be erase from cache after few seconds
meta_ptr_->CleanUpCacheWithTTL(ttl);
}
{
uint64_t ttl = 5 * meta::M_SEC; // default: file will be deleted after few minutes
if (options_.mode_ == DBOptions::MODE::CLUSTER_WRITABLE) {
ttl = meta::D_SEC;
}
meta_ptr_->CleanUpFilesWithTTL(ttl);
}
meta_ptr_->CleanUpFilesWithTTL(ttl);
// ENGINE_LOG_TRACE << " Background compaction thread exit";
}
@ -821,22 +838,35 @@ DBImpl::BackgroundBuildIndex() {
std::unique_lock<std::mutex> lock(build_index_mutex_);
meta::TableFilesSchema to_index_files;
meta_ptr_->FilesToIndex(to_index_files);
Status status;
Status status = IgnoreFailedIndexFiles(to_index_files);
if (!to_index_files.empty()) {
scheduler::BuildIndexJobPtr job = std::make_shared<scheduler::BuildIndexJob>(meta_ptr_, options_);
// step 2: put build index task to scheduler
std::vector<std::pair<scheduler::BuildIndexJobPtr, scheduler::TableFileSchemaPtr>> job2file_map;
for (auto& file : to_index_files) {
scheduler::BuildIndexJobPtr job = std::make_shared<scheduler::BuildIndexJob>(meta_ptr_, options_);
scheduler::TableFileSchemaPtr file_ptr = std::make_shared<meta::TableFileSchema>(file);
job->AddToIndexFiles(file_ptr);
scheduler::JobMgrInst::GetInstance()->Put(job);
job2file_map.push_back(std::make_pair(job, file_ptr));
}
scheduler::JobMgrInst::GetInstance()->Put(job);
job->WaitBuildIndexFinish();
if (!job->GetStatus().ok()) {
Status status = job->GetStatus();
ENGINE_LOG_ERROR << "Building index failed: " << status.ToString();
for (auto iter = job2file_map.begin(); iter != job2file_map.end(); ++iter) {
scheduler::BuildIndexJobPtr job = iter->first;
meta::TableFileSchema& file_schema = *(iter->second.get());
job->WaitBuildIndexFinish();
if (!job->GetStatus().ok()) {
Status status = job->GetStatus();
ENGINE_LOG_ERROR << "Building index job " << job->id() << " failed: " << status.ToString();
MarkFailedIndexFile(file_schema);
} else {
MarkSucceedIndexFile(file_schema);
ENGINE_LOG_DEBUG << "Building index job " << job->id() << " succeed.";
}
}
ENGINE_LOG_DEBUG << "Background build index thread finished";
}
// ENGINE_LOG_TRACE << "Background build index thread exit";
@ -904,6 +934,7 @@ DBImpl::DropTableRecursively(const std::string& table_id, const meta::DatesT& da
if (dates.empty()) {
status = mem_mgr_->EraseMemVector(table_id); // not allow insert
status = meta_ptr_->DropTable(table_id); // soft delete table
CleanFailedIndexFileOfTable(table_id);
// scheduler will determine when to delete table files
auto nres = scheduler::ResMgrInst::GetInstance()->GetNumOfComputeResource();
@ -982,6 +1013,8 @@ DBImpl::BuildTableIndexRecursively(const std::string& table_id, const TableIndex
std::this_thread::sleep_for(std::chrono::milliseconds(std::min(10 * 1000, times * 100)));
GetFilesToBuildIndex(table_id, file_types, table_files);
times++;
IgnoreFailedIndexFiles(table_files);
}
// build index for partition
@ -994,12 +1027,27 @@ DBImpl::BuildTableIndexRecursively(const std::string& table_id, const TableIndex
}
}
// failed to build index for some files, return error
std::vector<std::string> failed_files;
GetFailedIndexFileOfTable(table_id, failed_files);
if (!failed_files.empty()) {
std::string msg = "Failed to build index for " + std::to_string(failed_files.size()) +
((failed_files.size() == 1) ? " file" : " files");
#ifdef MILVUS_GPU_VERSION
msg += ", file size is too large or gpu memory is not enough.";
#else
msg += ", please double check index parameters.";
#endif
return Status(DB_ERROR, msg);
}
return Status::OK();
}
Status
DBImpl::DropTableIndexRecursively(const std::string& table_id) {
ENGINE_LOG_DEBUG << "Drop index for table: " << table_id;
CleanFailedIndexFileOfTable(table_id);
auto status = meta_ptr_->DropTableIndex(table_id);
if (!status.ok()) {
return status;
@ -1042,5 +1090,86 @@ DBImpl::GetTableRowCountRecursively(const std::string& table_id, uint64_t& row_c
return Status::OK();
}
Status
DBImpl::CleanFailedIndexFileOfTable(const std::string& table_id) {
std::lock_guard<std::mutex> lck(index_failed_mutex_);
index_failed_files_.erase(table_id); // rebuild failed index files for this table
return Status::OK();
}
Status
DBImpl::GetFailedIndexFileOfTable(const std::string& table_id, std::vector<std::string>& failed_files) {
failed_files.clear();
std::lock_guard<std::mutex> lck(index_failed_mutex_);
auto iter = index_failed_files_.find(table_id);
if (iter != index_failed_files_.end()) {
FileID2FailedTimes& failed_map = iter->second;
for (auto it_file = failed_map.begin(); it_file != failed_map.end(); ++it_file) {
failed_files.push_back(it_file->first);
}
}
return Status::OK();
}
Status
DBImpl::MarkFailedIndexFile(const meta::TableFileSchema& file) {
std::lock_guard<std::mutex> lck(index_failed_mutex_);
auto iter = index_failed_files_.find(file.table_id_);
if (iter == index_failed_files_.end()) {
FileID2FailedTimes failed_files;
failed_files.insert(std::make_pair(file.file_id_, 1));
index_failed_files_.insert(std::make_pair(file.table_id_, failed_files));
} else {
auto it_failed_files = iter->second.find(file.file_id_);
if (it_failed_files != iter->second.end()) {
it_failed_files->second++;
} else {
iter->second.insert(std::make_pair(file.file_id_, 1));
}
}
return Status::OK();
}
Status
DBImpl::MarkSucceedIndexFile(const meta::TableFileSchema& file) {
std::lock_guard<std::mutex> lck(index_failed_mutex_);
auto iter = index_failed_files_.find(file.table_id_);
if (iter != index_failed_files_.end()) {
iter->second.erase(file.file_id_);
}
return Status::OK();
}
Status
DBImpl::IgnoreFailedIndexFiles(meta::TableFilesSchema& table_files) {
std::lock_guard<std::mutex> lck(index_failed_mutex_);
// there could be some failed files belong to different table.
// some files may has failed for several times, no need to build index for these files.
// thus we can avoid dead circle for build index operation
for (auto it_file = table_files.begin(); it_file != table_files.end();) {
auto it_failed_files = index_failed_files_.find((*it_file).table_id_);
if (it_failed_files != index_failed_files_.end()) {
auto it_failed_file = it_failed_files->second.find((*it_file).file_id_);
if (it_failed_file != it_failed_files->second.end()) {
if (it_failed_file->second >= INDEX_FAILED_RETRY_TIME) {
it_file = table_files.erase(it_file);
continue;
}
}
}
++it_file;
}
return Status::OK();
}
} // namespace engine
} // namespace milvus

View File

@ -25,6 +25,7 @@
#include <atomic>
#include <condition_variable>
#include <list>
#include <map>
#include <memory>
#include <mutex>
#include <set>
@ -35,8 +36,6 @@
namespace milvus {
namespace engine {
class Env;
namespace meta {
class Meta;
}
@ -179,6 +178,21 @@ class DBImpl : public DB {
Status
GetTableRowCountRecursively(const std::string& table_id, uint64_t& row_count);
Status
CleanFailedIndexFileOfTable(const std::string& table_id);
Status
GetFailedIndexFileOfTable(const std::string& table_id, std::vector<std::string>& failed_files);
Status
MarkFailedIndexFile(const meta::TableFileSchema& file);
Status
MarkSucceedIndexFile(const meta::TableFileSchema& file);
Status
IgnoreFailedIndexFiles(meta::TableFilesSchema& table_files);
private:
const DBOptions options_;
@ -200,7 +214,11 @@ class DBImpl : public DB {
std::list<std::future<void>> index_thread_results_;
std::mutex build_index_mutex_;
}; // DBImpl
std::mutex index_failed_mutex_;
using FileID2FailedTimes = std::map<std::string, uint64_t>;
using Table2FailedFiles = std::map<std::string, FileID2FailedTimes>;
Table2FailedFiles index_failed_files_; // file id mapping to failed times
}; // DBImpl
} // namespace engine
} // namespace milvus

View File

@ -154,7 +154,9 @@ GetTableFilePath(const DBMetaOptions& options, meta::TableFileSchema& table_file
}
std::string msg = "Table file doesn't exist: " + file_path;
ENGINE_LOG_ERROR << msg << " in path: " << options.path_ << " for table: " << table_file.table_id_;
if (table_file.file_size_ > 0) { // no need to pop error for empty file
ENGINE_LOG_ERROR << msg << " in path: " << options.path_ << " for table: " << table_file.table_id_;
}
return Status(DB_ERROR, msg);
}

View File

@ -77,8 +77,8 @@ class ExecutionEngine {
virtual Status
CopyToCpu() = 0;
virtual std::shared_ptr<ExecutionEngine>
Clone() = 0;
// virtual std::shared_ptr<ExecutionEngine>
// Clone() = 0;
virtual Status
Merge(const std::string& location) = 0;

View File

@ -93,18 +93,18 @@ ExecutionEngineImpl::CreatetVecIndex(EngineType type) {
break;
}
case EngineType::FAISS_IVFFLAT: {
#ifdef MILVUS_CPU_VERSION
index = GetVecIndexFactory(IndexType::FAISS_IVFFLAT_CPU);
#else
#ifdef MILVUS_GPU_VERSION
index = GetVecIndexFactory(IndexType::FAISS_IVFFLAT_MIX);
#else
index = GetVecIndexFactory(IndexType::FAISS_IVFFLAT_CPU);
#endif
break;
}
case EngineType::FAISS_IVFSQ8: {
#ifdef MILVUS_CPU_VERSION
index = GetVecIndexFactory(IndexType::FAISS_IVFSQ8_CPU);
#else
#ifdef MILVUS_GPU_VERSION
index = GetVecIndexFactory(IndexType::FAISS_IVFSQ8_MIX);
#else
index = GetVecIndexFactory(IndexType::FAISS_IVFSQ8_CPU);
#endif
break;
}
@ -112,15 +112,17 @@ ExecutionEngineImpl::CreatetVecIndex(EngineType type) {
index = GetVecIndexFactory(IndexType::NSG_MIX);
break;
}
#ifdef CUSTOMIZATION
case EngineType::FAISS_IVFSQ8H: {
index = GetVecIndexFactory(IndexType::FAISS_IVFSQ8_HYBRID);
break;
}
#endif
case EngineType::FAISS_PQ: {
#ifdef MILVUS_CPU_VERSION
index = GetVecIndexFactory(IndexType::FAISS_IVFPQ_CPU);
#else
#ifdef MILVUS_GPU_VERSION
index = GetVecIndexFactory(IndexType::FAISS_IVFPQ_MIX);
#else
index = GetVecIndexFactory(IndexType::FAISS_IVFPQ_CPU);
#endif
break;
}
@ -257,6 +259,11 @@ ExecutionEngineImpl::PhysicalSize() const {
Status
ExecutionEngineImpl::Serialize() {
auto status = write_index(index_, location_);
// here we reset index size by file size,
// since some index type(such as SQ8) data size become smaller after serialized
index_->set_size(PhysicalSize());
return status;
}
@ -410,18 +417,18 @@ ExecutionEngineImpl::CopyToCpu() {
return Status::OK();
}
ExecutionEnginePtr
ExecutionEngineImpl::Clone() {
if (index_ == nullptr) {
ENGINE_LOG_ERROR << "ExecutionEngineImpl: index is null, failed to clone";
return nullptr;
}
auto ret = std::make_shared<ExecutionEngineImpl>(dim_, location_, index_type_, metric_type_, nlist_);
ret->Init();
ret->index_ = index_->Clone();
return ret;
}
// ExecutionEnginePtr
// ExecutionEngineImpl::Clone() {
// if (index_ == nullptr) {
// ENGINE_LOG_ERROR << "ExecutionEngineImpl: index is null, failed to clone";
// return nullptr;
// }
//
// auto ret = std::make_shared<ExecutionEngineImpl>(dim_, location_, index_type_, metric_type_, nlist_);
// ret->Init();
// ret->index_ = index_->Clone();
// return ret;
//}
Status
ExecutionEngineImpl::Merge(const std::string& location) {
@ -604,6 +611,9 @@ ExecutionEngineImpl::Init() {
server::Config& config = server::Config::GetInstance();
std::vector<int64_t> gpu_ids;
Status s = config.GetGpuResourceConfigBuildIndexResources(gpu_ids);
if (!s.ok()) {
gpu_num_ = knowhere::INVALID_VALUE;
}
for (auto id : gpu_ids) {
if (gpu_num_ == id) {
return Status::OK();

View File

@ -64,8 +64,8 @@ class ExecutionEngineImpl : public ExecutionEngine {
Status
CopyToCpu() override;
ExecutionEnginePtr
Clone() override;
// ExecutionEnginePtr
// Clone() override;
Status
Merge(const std::string& location) override;

View File

@ -118,9 +118,13 @@ class Meta {
Archive() = 0;
virtual Status
CleanUp() = 0;
CleanUpShadowFiles() = 0;
virtual Status CleanUpFilesWithTTL(uint16_t) = 0;
virtual Status
CleanUpCacheWithTTL(uint64_t seconds) = 0;
virtual Status
CleanUpFilesWithTTL(uint64_t seconds) = 0;
virtual Status
DropAll() = 0;

View File

@ -20,6 +20,7 @@
#include "db/IDGenerator.h"
#include "db/Utils.h"
#include "metrics/Metrics.h"
#include "utils/CommonUtil.h"
#include "utils/Exception.h"
#include "utils/Log.h"
#include "utils/StringHelpFunctions.h"
@ -289,45 +290,50 @@ MySQLMetaImpl::Initialize() {
// step 4: validate to avoid open old version schema
ValidateMetaSchema();
// step 5: create meta tables
try {
if (mode_ != DBOptions::MODE::CLUSTER_READONLY) {
CleanUp();
}
// step 5: clean shadow files
if (mode_ != DBOptions::MODE::CLUSTER_READONLY) {
CleanUpShadowFiles();
}
{
mysqlpp::ScopedConnection connectionPtr(*mysql_connection_pool_, safe_grab_);
// step 6: try connect mysql server
mysqlpp::ScopedConnection connectionPtr(*mysql_connection_pool_, safe_grab_);
if (connectionPtr == nullptr) {
return Status(DB_ERROR, "Failed to connect to meta server(mysql)");
}
if (connectionPtr == nullptr) {
std::string msg = "Failed to connect MySQL meta server: " + uri;
ENGINE_LOG_ERROR << msg;
throw Exception(DB_INVALID_META_URI, msg);
}
if (!connectionPtr->thread_aware()) {
ENGINE_LOG_ERROR << "MySQL++ wasn't built with thread awareness! Can't run without it.";
return Status(DB_ERROR, "MySQL++ wasn't built with thread awareness! Can't run without it.");
}
mysqlpp::Query InitializeQuery = connectionPtr->query();
if (!connectionPtr->thread_aware()) {
std::string msg =
"Failed to initialize MySQL meta backend: MySQL client component wasn't built with thread awareness";
ENGINE_LOG_ERROR << msg;
throw Exception(DB_INVALID_META_URI, msg);
}
InitializeQuery << "CREATE TABLE IF NOT EXISTS " << TABLES_SCHEMA.name() << " ("
<< TABLES_SCHEMA.ToString() + ");";
// step 7: create meta table Tables
mysqlpp::Query InitializeQuery = connectionPtr->query();
ENGINE_LOG_DEBUG << "MySQLMetaImpl::Initialize: " << InitializeQuery.str();
InitializeQuery << "CREATE TABLE IF NOT EXISTS " << TABLES_SCHEMA.name() << " (" << TABLES_SCHEMA.ToString() + ");";
if (!InitializeQuery.exec()) {
return HandleException("Initialization Error", InitializeQuery.error());
}
ENGINE_LOG_DEBUG << "MySQLMetaImpl::Initialize: " << InitializeQuery.str();
InitializeQuery << "CREATE TABLE IF NOT EXISTS " << TABLEFILES_SCHEMA.name() << " ("
<< TABLEFILES_SCHEMA.ToString() + ");";
if (!InitializeQuery.exec()) {
std::string msg = "Failed to create meta table 'Tables' in MySQL";
ENGINE_LOG_ERROR << msg;
throw Exception(DB_META_TRANSACTION_FAILED, msg);
}
ENGINE_LOG_DEBUG << "MySQLMetaImpl::Initialize: " << InitializeQuery.str();
// step 8: create meta table TableFiles
InitializeQuery << "CREATE TABLE IF NOT EXISTS " << TABLEFILES_SCHEMA.name() << " ("
<< TABLEFILES_SCHEMA.ToString() + ");";
if (!InitializeQuery.exec()) {
return HandleException("Initialization Error", InitializeQuery.error());
}
} // Scoped Connection
} catch (std::exception& e) {
return HandleException("GENERAL ERROR DURING INITIALIZATION", e.what());
ENGINE_LOG_DEBUG << "MySQLMetaImpl::Initialize: " << InitializeQuery.str();
if (!InitializeQuery.exec()) {
std::string msg = "Failed to create meta table 'TableFiles' in MySQL";
ENGINE_LOG_ERROR << msg;
throw Exception(DB_META_TRANSACTION_FAILED, msg);
}
return Status::OK();
@ -1609,10 +1615,35 @@ MySQLMetaImpl::FilesByType(const std::string& table_id, const std::vector<int>&
}
}
ENGINE_LOG_DEBUG << "Table " << table_id << " currently has raw files:" << raw_count
<< " new files:" << new_count << " new_merge files:" << new_merge_count
<< " new_index files:" << new_index_count << " to_index files:" << to_index_count
<< " index files:" << index_count << " backup files:" << backup_count;
std::string msg = "Get table files by type.";
for (int file_type : file_types) {
switch (file_type) {
case (int)TableFileSchema::RAW:
msg = msg + " raw files:" + std::to_string(raw_count);
break;
case (int)TableFileSchema::NEW:
msg = msg + " new files:" + std::to_string(new_count);
break;
case (int)TableFileSchema::NEW_MERGE:
msg = msg + " new_merge files:" + std::to_string(new_merge_count);
break;
case (int)TableFileSchema::NEW_INDEX:
msg = msg + " new_index files:" + std::to_string(new_index_count);
break;
case (int)TableFileSchema::TO_INDEX:
msg = msg + " to_index files:" + std::to_string(to_index_count);
break;
case (int)TableFileSchema::INDEX:
msg = msg + " index files:" + std::to_string(index_count);
break;
case (int)TableFileSchema::BACKUP:
msg = msg + " backup files:" + std::to_string(backup_count);
break;
default:
break;
}
}
ENGINE_LOG_DEBUG << msg;
}
} catch (std::exception& e) {
return HandleException("GENERAL ERROR WHEN GET FILE BY TYPE", e.what());
@ -1710,7 +1741,7 @@ MySQLMetaImpl::Size(uint64_t& result) {
}
Status
MySQLMetaImpl::CleanUp() {
MySQLMetaImpl::CleanUpShadowFiles() {
try {
mysqlpp::ScopedConnection connectionPtr(*mysql_connection_pool_, safe_grab_);
@ -1752,7 +1783,49 @@ MySQLMetaImpl::CleanUp() {
}
Status
MySQLMetaImpl::CleanUpFilesWithTTL(uint16_t seconds) {
MySQLMetaImpl::CleanUpCacheWithTTL(uint64_t seconds) {
auto now = utils::GetMicroSecTimeStamp();
// erase deleted/backup files from cache
try {
server::MetricCollector metric;
mysqlpp::ScopedConnection connectionPtr(*mysql_connection_pool_, safe_grab_);
if (connectionPtr == nullptr) {
return Status(DB_ERROR, "Failed to connect to meta server(mysql)");
}
mysqlpp::Query cleanUpFilesWithTTLQuery = connectionPtr->query();
cleanUpFilesWithTTLQuery << "SELECT id, table_id, file_id, date"
<< " FROM " << META_TABLEFILES << " WHERE file_type IN ("
<< std::to_string(TableFileSchema::TO_DELETE) << ","
<< std::to_string(TableFileSchema::BACKUP) << ")"
<< " AND updated_time < " << std::to_string(now - seconds * US_PS) << ";";
mysqlpp::StoreQueryResult res = cleanUpFilesWithTTLQuery.store();
TableFileSchema table_file;
std::vector<std::string> idsToDelete;
for (auto& resRow : res) {
table_file.id_ = resRow["id"]; // implicit conversion
resRow["table_id"].to_string(table_file.table_id_);
resRow["file_id"].to_string(table_file.file_id_);
table_file.date_ = resRow["date"];
utils::GetTableFilePath(options_, table_file);
server::CommonUtil::EraseFromCache(table_file.location_);
}
} catch (std::exception& e) {
return HandleException("GENERAL ERROR WHEN CLEANING UP FILES WITH TTL", e.what());
}
return Status::OK();
}
Status
MySQLMetaImpl::CleanUpFilesWithTTL(uint64_t seconds) {
auto now = utils::GetMicroSecTimeStamp();
std::set<std::string> table_ids;

View File

@ -117,10 +117,13 @@ class MySQLMetaImpl : public Meta {
Size(uint64_t& result) override;
Status
CleanUp() override;
CleanUpShadowFiles() override;
Status
CleanUpFilesWithTTL(uint16_t seconds) override;
CleanUpCacheWithTTL(uint64_t seconds) override;
Status
CleanUpFilesWithTTL(uint64_t seconds) override;
Status
DropAll() override;

View File

@ -20,6 +20,7 @@
#include "db/IDGenerator.h"
#include "db/Utils.h"
#include "metrics/Metrics.h"
#include "utils/CommonUtil.h"
#include "utils/Exception.h"
#include "utils/Log.h"
#include "utils/StringHelpFunctions.h"
@ -154,7 +155,7 @@ SqliteMetaImpl::Initialize() {
ConnectorPtr->open_forever(); // thread safe option
ConnectorPtr->pragma.journal_mode(journal_mode::WAL); // WAL => write ahead log
CleanUp();
CleanUpShadowFiles();
return Status::OK();
}
@ -1156,10 +1157,34 @@ SqliteMetaImpl::FilesByType(const std::string& table_id,
table_files.emplace_back(file_schema);
}
ENGINE_LOG_DEBUG << "Table " << table_id << " currently has raw files:" << raw_count
<< " new files:" << new_count << " new_merge files:" << new_merge_count
<< " new_index files:" << new_index_count << " to_index files:" << to_index_count
<< " index files:" << index_count << " backup files:" << backup_count;
std::string msg = "Get table files by type.";
for (int file_type : file_types) {
switch (file_type) {
case (int)TableFileSchema::RAW:
msg = msg + " raw files:" + std::to_string(raw_count);
break;
case (int)TableFileSchema::NEW:
msg = msg + " new files:" + std::to_string(new_count);
break;
case (int)TableFileSchema::NEW_MERGE:
msg = msg + " new_merge files:" + std::to_string(new_merge_count);
break;
case (int)TableFileSchema::NEW_INDEX:
msg = msg + " new_index files:" + std::to_string(new_index_count);
break;
case (int)TableFileSchema::TO_INDEX:
msg = msg + " to_index files:" + std::to_string(to_index_count);
break;
case (int)TableFileSchema::INDEX:
msg = msg + " index files:" + std::to_string(index_count);
break;
case (int)TableFileSchema::BACKUP:
msg = msg + " backup files:" + std::to_string(backup_count);
break;
default:break;
}
}
ENGINE_LOG_DEBUG << msg;
}
} catch (std::exception& e) {
return HandleException("Encounter exception when check non index files", e.what());
@ -1231,7 +1256,7 @@ SqliteMetaImpl::Size(uint64_t& result) {
}
Status
SqliteMetaImpl::CleanUp() {
SqliteMetaImpl::CleanUpShadowFiles() {
try {
server::MetricCollector metric;
@ -1269,7 +1294,51 @@ SqliteMetaImpl::CleanUp() {
}
Status
SqliteMetaImpl::CleanUpFilesWithTTL(uint16_t seconds) {
SqliteMetaImpl::CleanUpCacheWithTTL(uint64_t seconds) {
auto now = utils::GetMicroSecTimeStamp();
// erase deleted/backup files from cache
try {
server::MetricCollector metric;
// multi-threads call sqlite update may get exception('bad logic', etc), so we add a lock here
std::lock_guard<std::mutex> meta_lock(meta_mutex_);
std::vector<int> file_types = {
(int)TableFileSchema::TO_DELETE,
(int)TableFileSchema::BACKUP,
};
auto files = ConnectorPtr->select(columns(&TableFileSchema::id_,
&TableFileSchema::table_id_,
&TableFileSchema::file_id_,
&TableFileSchema::date_),
where(
in(&TableFileSchema::file_type_, file_types)
and
c(&TableFileSchema::updated_time_)
< now - seconds * US_PS));
for (auto& file : files) {
TableFileSchema table_file;
table_file.id_ = std::get<0>(file);
table_file.table_id_ = std::get<1>(file);
table_file.file_id_ = std::get<2>(file);
table_file.date_ = std::get<3>(file);
utils::GetTableFilePath(options_, table_file);
server::CommonUtil::EraseFromCache(table_file.location_);
}
} catch (std::exception& e) {
return HandleException("Encounter exception when clean cache", e.what());
}
return Status::OK();
}
Status
SqliteMetaImpl::CleanUpFilesWithTTL(uint64_t seconds) {
auto now = utils::GetMicroSecTimeStamp();
std::set<std::string> table_ids;

View File

@ -117,10 +117,13 @@ class SqliteMetaImpl : public Meta {
Archive() override;
Status
CleanUp() override;
CleanUpShadowFiles() override;
Status
CleanUpFilesWithTTL(uint16_t seconds) override;
CleanUpCacheWithTTL(uint64_t seconds) override;
Status
CleanUpFilesWithTTL(uint64_t seconds) override;
Status
DropAll() override;

View File

@ -1,6 +0,0 @@
We manually change two APIs in "milvus.pd.h":
add_vector_data()
add_row_id_array()
add_ids()
add_distances()
If proto files need be generated again, remember to re-change above APIs.

View File

@ -72,6 +72,11 @@ include(ExternalProject)
include(DefineOptionsCore)
include(BuildUtilsCore)
if (CUSTOMIZATION)
set(MILVUS_GPU_VERSION ON)
add_compile_definitions(CUSTOMIZATION)
endif ()
set(KNOWHERE_CPU_VERSION false)
if (MILVUS_GPU_VERSION OR KNOWHERE_GPU_VERSION)
message(STATUS "Building Knowhere GPU version")

View File

@ -49,6 +49,8 @@ else ()
define_option(KNOWHERE_GPU_VERSION "Build GPU version" OFF)
endif ()
define_option(CUSTOMIZATION "Build with customized FAISS library" OFF)
#----------------------------------------------------------------------
set_option_category("Thirdparty")

View File

@ -225,11 +225,11 @@ foreach (_VERSION_ENTRY ${TOOLCHAIN_VERSIONS_TXT})
set(${_LIB_NAME} "${_LIB_VERSION}")
endforeach ()
set(FAISS_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/thirdparty/faiss)
if (DEFINED ENV{FAISS_SOURCE_URL})
set(FAISS_SOURCE_URL "$ENV{FAISS_SOURCE_URL}")
else ()
set(FAISS_SOURCE_URL "https://github.com/JinHai-CN/faiss/archive/${FAISS_VERSION}.tar.gz")
set(FAISS_MD5 "b02c1a53234f5acc9bea1b0c55524f50")
endif ()
if (DEFINED ENV{KNOWHERE_ARROW_URL})
@ -708,7 +708,7 @@ macro(build_faiss)
set(FAISS_CONFIGURE_ARGS
"--prefix=${FAISS_PREFIX}"
"CFLAGS=${EP_C_FLAGS}"
"CXXFLAGS=${EP_CXX_FLAGS}"
"CXXFLAGS=${EP_CXX_FLAGS} -mavx2 -mf16c"
--without-python)
if (FAISS_WITH_MKL)
@ -737,12 +737,12 @@ macro(build_faiss)
set(FAISS_COMPUTE_TYPE "gpu")
else ()
set(FAISS_COMPUTE_TYPE "cpu")
endif()
endif ()
if (FAISS_WITH_MKL)
set(FAISS_CACHE_PACKAGE_NAME "faiss_${FAISS_COMPUTE_TYPE}_mkl_${FAISS_COMBINE_MD5}.tar.gz")
else ()
set(FAISS_CACHE_PACKAGE_NAME "faiss_${FAISS_COMPUTE_TYPE}_openblas_${FAISS_COMBINE_MD5}.tar.gz")
endif()
endif ()
set(FAISS_CACHE_URL "${JFROG_ARTFACTORY_CACHE_URL}/${FAISS_CACHE_PACKAGE_NAME}")
set(FAISS_CACHE_PACKAGE_PATH "${THIRDPARTY_PACKAGE_CACHE}/${FAISS_CACHE_PACKAGE_NAME}")
@ -779,21 +779,41 @@ macro(build_faiss)
endif ()
endif ()
else ()
externalproject_add(faiss_ep
URL
${FAISS_SOURCE_URL}
${EP_LOG_OPTIONS}
CONFIGURE_COMMAND
"./configure"
${FAISS_CONFIGURE_ARGS}
BUILD_COMMAND
${MAKE} ${MAKE_BUILD_ARGS} all
BUILD_IN_SOURCE
1
INSTALL_COMMAND
${MAKE} install
BUILD_BYPRODUCTS
${FAISS_STATIC_LIB})
if (CUSTOMIZATION)
externalproject_add(faiss_ep
DOWNLOAD_COMMAND
""
SOURCE_DIR
${FAISS_SOURCE_DIR}
${EP_LOG_OPTIONS}
CONFIGURE_COMMAND
"./configure"
${FAISS_CONFIGURE_ARGS}
BUILD_COMMAND
${MAKE} ${MAKE_BUILD_ARGS} all
BUILD_IN_SOURCE
1
INSTALL_COMMAND
${MAKE} install
BUILD_BYPRODUCTS
${FAISS_STATIC_LIB})
else ()
externalproject_add(faiss_ep
URL
${FAISS_SOURCE_URL}
${EP_LOG_OPTIONS}
CONFIGURE_COMMAND
"./configure"
${FAISS_CONFIGURE_ARGS}
BUILD_COMMAND
${MAKE} ${MAKE_BUILD_ARGS} all
BUILD_IN_SOURCE
1
INSTALL_COMMAND
${MAKE} install
BUILD_BYPRODUCTS
${FAISS_STATIC_LIB})
endif ()
if (NOT FAISS_WITH_MKL)
ExternalProject_Add_StepDependencies(faiss_ep build openblas_ep lapack_ep)

View File

@ -47,16 +47,16 @@ GPUIDMAP::CopyGpuToCpu(const Config& config) {
return std::make_shared<IDMAP>(new_index);
}
VectorIndexPtr
GPUIDMAP::Clone() {
auto cpu_idx = CopyGpuToCpu(Config());
if (auto idmap = std::dynamic_pointer_cast<IDMAP>(cpu_idx)) {
return idmap->CopyCpuToGpu(gpu_id_, Config());
} else {
KNOWHERE_THROW_MSG("IndexType not Support GpuClone");
}
}
// VectorIndexPtr
// GPUIDMAP::Clone() {
// auto cpu_idx = CopyGpuToCpu(Config());
//
// if (auto idmap = std::dynamic_pointer_cast<IDMAP>(cpu_idx)) {
// return idmap->CopyCpuToGpu(gpu_id_, Config());
// } else {
// KNOWHERE_THROW_MSG("IndexType not Support GpuClone");
// }
//}
BinarySet
GPUIDMAP::SerializeImpl() {

View File

@ -41,8 +41,8 @@ class GPUIDMAP : public IDMAP, public GPUIndex {
int64_t*
GetRawIds() override;
VectorIndexPtr
Clone() override;
// VectorIndexPtr
// Clone() override;
VectorIndexPtr
CopyGpuToGpu(const int64_t& device_id, const Config& config) override;

View File

@ -158,11 +158,11 @@ GPUIVF::CopyGpuToCpu(const Config& config) {
}
}
VectorIndexPtr
GPUIVF::Clone() {
auto cpu_idx = CopyGpuToCpu(Config());
return knowhere::cloner::CopyCpuToGpu(cpu_idx, gpu_id_, Config());
}
// VectorIndexPtr
// GPUIVF::Clone() {
// auto cpu_idx = CopyGpuToCpu(Config());
// return knowhere::cloner::CopyCpuToGpu(cpu_idx, gpu_id_, Config());
//}
VectorIndexPtr
GPUIVF::CopyGpuToGpu(const int64_t& device_id, const Config& config) {

View File

@ -75,8 +75,8 @@ class GPUIVF : public IVF, public GPUIndex {
VectorIndexPtr
CopyGpuToGpu(const int64_t& device_id, const Config& config) override;
VectorIndexPtr
Clone() final;
// VectorIndexPtr
// Clone() final;
protected:
void

View File

@ -184,15 +184,15 @@ IDMAP::Train(const Config& config) {
index_.reset(index);
}
VectorIndexPtr
IDMAP::Clone() {
std::lock_guard<std::mutex> lk(mutex_);
auto clone_index = faiss::clone_index(index_.get());
std::shared_ptr<faiss::Index> new_index;
new_index.reset(clone_index);
return std::make_shared<IDMAP>(new_index);
}
// VectorIndexPtr
// IDMAP::Clone() {
// std::lock_guard<std::mutex> lk(mutex_);
//
// auto clone_index = faiss::clone_index(index_.get());
// std::shared_ptr<faiss::Index> new_index;
// new_index.reset(clone_index);
// return std::make_shared<IDMAP>(new_index);
//}
VectorIndexPtr
IDMAP::CopyCpuToGpu(const int64_t& device_id, const Config& config) {

View File

@ -47,8 +47,8 @@ class IDMAP : public VectorIndex, public FaissBaseIndex {
int64_t
Count() override;
VectorIndexPtr
Clone() override;
// VectorIndexPtr
// Clone() override;
int64_t
Dimension() override;

View File

@ -256,20 +256,20 @@ IVF::CopyCpuToGpu(const int64_t& device_id, const Config& config) {
#endif
}
VectorIndexPtr
IVF::Clone() {
std::lock_guard<std::mutex> lk(mutex_);
auto clone_index = faiss::clone_index(index_.get());
std::shared_ptr<faiss::Index> new_index;
new_index.reset(clone_index);
return Clone_impl(new_index);
}
VectorIndexPtr
IVF::Clone_impl(const std::shared_ptr<faiss::Index>& index) {
return std::make_shared<IVF>(index);
}
// VectorIndexPtr
// IVF::Clone() {
// std::lock_guard<std::mutex> lk(mutex_);
//
// auto clone_index = faiss::clone_index(index_.get());
// std::shared_ptr<faiss::Index> new_index;
// new_index.reset(clone_index);
// return Clone_impl(new_index);
//}
//
// VectorIndexPtr
// IVF::Clone_impl(const std::shared_ptr<faiss::Index>& index) {
// return std::make_shared<IVF>(index);
//}
void
IVF::Seal() {

View File

@ -38,8 +38,8 @@ class IVF : public VectorIndex, public FaissBaseIndex {
explicit IVF(std::shared_ptr<faiss::Index> index) : FaissBaseIndex(std::move(index)) {
}
VectorIndexPtr
Clone() override;
// VectorIndexPtr
// Clone() override;
IndexModelPtr
Train(const DatasetPtr& dataset, const Config& config) override;
@ -81,8 +81,8 @@ class IVF : public VectorIndex, public FaissBaseIndex {
virtual std::shared_ptr<faiss::IVFSearchParameters>
GenParams(const Config& config);
virtual VectorIndexPtr
Clone_impl(const std::shared_ptr<faiss::Index>& index);
// virtual VectorIndexPtr
// Clone_impl(const std::shared_ptr<faiss::Index>& index);
virtual void
search_impl(int64_t n, const float* data, int64_t k, float* distances, int64_t* labels, const Config& cfg);

View File

@ -63,10 +63,10 @@ IVFPQ::GenParams(const Config& config) {
return params;
}
VectorIndexPtr
IVFPQ::Clone_impl(const std::shared_ptr<faiss::Index>& index) {
return std::make_shared<IVFPQ>(index);
}
// VectorIndexPtr
// IVFPQ::Clone_impl(const std::shared_ptr<faiss::Index>& index) {
// return std::make_shared<IVFPQ>(index);
//}
VectorIndexPtr
IVFPQ::CopyCpuToGpu(const int64_t& device_id, const Config& config) {

View File

@ -41,8 +41,8 @@ class IVFPQ : public IVF {
std::shared_ptr<faiss::IVFSearchParameters>
GenParams(const Config& config) override;
VectorIndexPtr
Clone_impl(const std::shared_ptr<faiss::Index>& index) override;
// VectorIndexPtr
// Clone_impl(const std::shared_ptr<faiss::Index>& index) override;
};
} // namespace knowhere

View File

@ -54,10 +54,10 @@ IVFSQ::Train(const DatasetPtr& dataset, const Config& config) {
return std::make_shared<IVFIndexModel>(ret_index);
}
VectorIndexPtr
IVFSQ::Clone_impl(const std::shared_ptr<faiss::Index>& index) {
return std::make_shared<IVFSQ>(index);
}
// VectorIndexPtr
// IVFSQ::Clone_impl(const std::shared_ptr<faiss::Index>& index) {
// return std::make_shared<IVFSQ>(index);
//}
VectorIndexPtr
IVFSQ::CopyCpuToGpu(const int64_t& device_id, const Config& config) {

View File

@ -38,8 +38,8 @@ class IVFSQ : public IVF {
CopyCpuToGpu(const int64_t& device_id, const Config& config) override;
protected:
VectorIndexPtr
Clone_impl(const std::shared_ptr<faiss::Index>& index) override;
// VectorIndexPtr
// Clone_impl(const std::shared_ptr<faiss::Index>& index) override;
};
} // namespace knowhere

View File

@ -20,12 +20,13 @@
#include "knowhere/common/Exception.h"
#include "knowhere/common/Timer.h"
#ifdef MILVUS_GPU_VERSION
#include "knowhere/index/vector_index/IndexGPUIVF.h"
#include "knowhere/index/vector_index/IndexGPUIDMAP.h"
#include "knowhere/index/vector_index/IndexGPUIVF.h"
#include "knowhere/index/vector_index/helpers/Cloner.h"
#endif
#include "knowhere/index/vector_index/IndexIVF.h"
#include "knowhere/index/vector_index/IndexIDMAP.h"
#include "knowhere/index/vector_index/nsg/NSG.h"
#include "knowhere/index/vector_index/nsg/NSGIO.h"
@ -118,23 +119,32 @@ NSG::Train(const DatasetPtr& dataset, const Config& config) {
build_cfg->CheckValid(); // throw exception
}
// TODO(linxj): dev IndexFactory, support more IndexType
auto idmap = std::make_shared<IDMAP>();
idmap->Train(config);
idmap->AddWithoutId(dataset, config);
Graph knng;
float* raw_data = idmap->GetRawVectors();
#ifdef MILVUS_GPU_VERSION
// auto preprocess_index = std::make_shared<GPUIVF>(build_cfg->gpu_id);
if (build_cfg->gpu_id == knowhere::INVALID_VALUE) {
auto preprocess_index = std::make_shared<IVF>();
auto model = preprocess_index->Train(dataset, config);
preprocess_index->set_index_model(model);
preprocess_index->Add(dataset, config);
preprocess_index->GenGraph(raw_data, build_cfg->knng, knng, config);
} else {
// TODO(linxj): use ivf instead?
auto gpu_idx = cloner::CopyCpuToGpu(idmap, build_cfg->gpu_id, config);
auto gpu_idmap = std::dynamic_pointer_cast<GPUIDMAP>(gpu_idx);
gpu_idmap->GenGraph(raw_data, build_cfg->knng, knng, config);
}
#else
auto preprocess_index = std::make_shared<IVF>();
auto model = preprocess_index->Train(dataset, config);
preprocess_index->set_index_model(model);
preprocess_index->AddWithoutIds(dataset, config);
preprocess_index->GenGraph(raw_data, build_cfg->knng, knng, config);
#endif
auto preprocess_index = std::make_shared<IDMAP>();
preprocess_index->Train(config);
preprocess_index->AddWithoutId(dataset, config);
float* raw_data = preprocess_index->GetRawVectors();
auto xx = cloner::CopyCpuToGpu(preprocess_index, 0, config);
auto ss = std::dynamic_pointer_cast<GPUIDMAP>(xx);
Graph knng;
ss->GenGraph(raw_data, build_cfg->knng, knng, config);
GETTENSOR(dataset)
algo::BuildParams b_params;
b_params.candidate_pool_size = build_cfg->candidate_pool_size;
b_params.out_degree = build_cfg->out_degree;
@ -143,6 +153,7 @@ NSG::Train(const DatasetPtr& dataset, const Config& config) {
auto array = dataset->array()[0];
auto p_ids = array->data()->GetValues<int64_t>(1, 0);
GETTENSOR(dataset)
index_ = std::make_shared<algo::NsgIndex>(dim, rows);
index_->SetKnnGraph(knng);
index_->Build_with_ids(rows, (float*)p_data, (int64_t*)p_ids, b_params);
@ -164,10 +175,10 @@ NSG::Dimension() {
return index_->dimension;
}
VectorIndexPtr
NSG::Clone() {
KNOWHERE_THROW_MSG("not support");
}
// VectorIndexPtr
// NSG::Clone() {
// KNOWHERE_THROW_MSG("not support");
//}
void
NSG::Seal() {

View File

@ -49,8 +49,8 @@ class NSG : public VectorIndex {
Count() override;
int64_t
Dimension() override;
VectorIndexPtr
Clone() override;
// VectorIndexPtr
// Clone() override;
void
Seal() override;

View File

@ -210,6 +210,9 @@ CPUSPTAGRNG::Load(const BinarySet& binary_set) {
IndexModelPtr
CPUSPTAGRNG::Train(const DatasetPtr& origin, const Config& train_config) {
SetParameters(train_config);
if (train_config != nullptr) {
train_config->CheckValid(); // throw exception
}
DatasetPtr dataset = origin->Clone();
// if (index_ptr_->GetDistCalcMethod() == SPTAG::DistCalcMethod::Cosine
@ -295,6 +298,9 @@ CPUSPTAGRNG::SetParameters(const Config& config) {
DatasetPtr
CPUSPTAGRNG::Search(const DatasetPtr& dataset, const Config& config) {
SetParameters(config);
if (config != nullptr) {
config->CheckValid(); // throw exception
}
auto tensor = dataset->tensor()[0];
auto p = (float*)tensor->raw_mutable_data();
for (auto i = 0; i < 10; ++i) {
@ -325,10 +331,10 @@ CPUSPTAGRNG::Dimension() {
return index_ptr_->GetFeatureDim();
}
VectorIndexPtr
CPUSPTAGRNG::Clone() {
KNOWHERE_THROW_MSG("not support");
}
// VectorIndexPtr
// CPUSPTAGRNG::Clone() {
// KNOWHERE_THROW_MSG("not support");
//}
void
CPUSPTAGRNG::Seal() {

View File

@ -36,8 +36,8 @@ class CPUSPTAGRNG : public VectorIndex {
BinarySet
Serialize() override;
VectorIndexPtr
Clone() override;
// VectorIndexPtr
// Clone() override;
void
Load(const BinarySet& index_array) override;

View File

@ -49,8 +49,8 @@ class VectorIndex : public Index {
Seal() = 0;
// TODO(linxj): Deprecated
virtual VectorIndexPtr
Clone() = 0;
// virtual VectorIndexPtr
// Clone() = 0;
virtual int64_t
Count() = 0;

View File

@ -180,10 +180,10 @@ struct SPTAGCfg : public Cfg {
SPTAGCfg() = default;
bool
CheckValid() override {
return true;
};
// bool
// CheckValid() override {
// return true;
// };
};
using SPTAGConfig = std::shared_ptr<SPTAGCfg>;

View File

@ -0,0 +1 @@
sift1M

View File

@ -0,0 +1,21 @@
*.swp
*.swo
*.o
*.a
*.dSYM
*.so
*.dylib
*.pyc
*~
.DS_Store
depend
/config.*
/aclocal.m4
/autom4te.cache/
/makefile.inc
/bin/
/c_api/bin/
/c_api/gpu/bin/
/tests/test
/tests/gtest/
include/

View File

@ -0,0 +1,719 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
/*
* implementation of Hyper-parameter auto-tuning
*/
#include <faiss/AutoTune.h>
#include <cmath>
#include <faiss/impl/FaissAssert.h>
#include <faiss/utils/utils.h>
#include <faiss/utils/random.h>
#include <faiss/IndexFlat.h>
#include <faiss/VectorTransform.h>
#include <faiss/IndexPreTransform.h>
#include <faiss/IndexLSH.h>
#include <faiss/IndexPQ.h>
#include <faiss/IndexIVF.h>
#include <faiss/IndexIVFPQ.h>
#include <faiss/IndexIVFPQR.h>
#include <faiss/IndexIVFFlat.h>
#include <faiss/MetaIndexes.h>
#include <faiss/IndexScalarQuantizer.h>
#include <faiss/IndexHNSW.h>
#include <faiss/IndexBinaryFlat.h>
#include <faiss/IndexBinaryHNSW.h>
#include <faiss/IndexBinaryIVF.h>
namespace faiss {
AutoTuneCriterion::AutoTuneCriterion (idx_t nq, idx_t nnn):
nq (nq), nnn (nnn), gt_nnn (0)
{}
void AutoTuneCriterion::set_groundtruth (
int gt_nnn, const float *gt_D_in, const idx_t *gt_I_in)
{
this->gt_nnn = gt_nnn;
if (gt_D_in) { // allow null for this, as it is often not used
gt_D.resize (nq * gt_nnn);
memcpy (gt_D.data(), gt_D_in, sizeof (gt_D[0]) * nq * gt_nnn);
}
gt_I.resize (nq * gt_nnn);
memcpy (gt_I.data(), gt_I_in, sizeof (gt_I[0]) * nq * gt_nnn);
}
OneRecallAtRCriterion::OneRecallAtRCriterion (idx_t nq, idx_t R):
AutoTuneCriterion(nq, R), R(R)
{}
double OneRecallAtRCriterion::evaluate(const float* /*D*/, const idx_t* I)
const {
FAISS_THROW_IF_NOT_MSG(
(gt_I.size() == gt_nnn * nq && gt_nnn >= 1 && nnn >= R),
"ground truth not initialized");
idx_t n_ok = 0;
for (idx_t q = 0; q < nq; q++) {
idx_t gt_nn = gt_I[q * gt_nnn];
const idx_t* I_line = I + q * nnn;
for (int i = 0; i < R; i++) {
if (I_line[i] == gt_nn) {
n_ok++;
break;
}
}
}
return n_ok / double(nq);
}
IntersectionCriterion::IntersectionCriterion (idx_t nq, idx_t R):
AutoTuneCriterion(nq, R), R(R)
{}
double IntersectionCriterion::evaluate(const float* /*D*/, const idx_t* I)
const {
FAISS_THROW_IF_NOT_MSG(
(gt_I.size() == gt_nnn * nq && gt_nnn >= R && nnn >= R),
"ground truth not initialized");
int64_t n_ok = 0;
#pragma omp parallel for reduction(+: n_ok)
for (idx_t q = 0; q < nq; q++) {
n_ok += ranklist_intersection_size (
R, &gt_I [q * gt_nnn],
R, I + q * nnn);
}
return n_ok / double (nq * R);
}
/***************************************************************
* OperatingPoints
***************************************************************/
OperatingPoints::OperatingPoints ()
{
clear();
}
void OperatingPoints::clear ()
{
all_pts.clear();
optimal_pts.clear();
/// default point: doing nothing gives 0 performance and takes 0 time
OperatingPoint op = {0, 0, "", -1};
optimal_pts.push_back(op);
}
/// add a performance measure
bool OperatingPoints::add (double perf, double t, const std::string & key,
size_t cno)
{
OperatingPoint op = {perf, t, key, int64_t(cno)};
all_pts.push_back (op);
if (perf == 0) {
return false; // no method for 0 accuracy is faster than doing nothing
}
std::vector<OperatingPoint> & a = optimal_pts;
if (perf > a.back().perf) {
// keep unconditionally
a.push_back (op);
} else if (perf == a.back().perf) {
if (t < a.back ().t) {
a.back() = op;
} else {
return false;
}
} else {
int i;
// stricto sensu this should be a bissection
for (i = 0; i < a.size(); i++) {
if (a[i].perf >= perf) break;
}
assert (i < a.size());
if (t < a[i].t) {
if (a[i].perf == perf) {
a[i] = op;
} else {
a.insert (a.begin() + i, op);
}
} else {
return false;
}
}
{ // remove non-optimal points from array
int i = a.size() - 1;
while (i > 0) {
if (a[i].t < a[i - 1].t)
a.erase (a.begin() + (i - 1));
i--;
}
}
return true;
}
int OperatingPoints::merge_with (const OperatingPoints &other,
const std::string & prefix)
{
int n_add = 0;
for (int i = 0; i < other.all_pts.size(); i++) {
const OperatingPoint & op = other.all_pts[i];
if (add (op.perf, op.t, prefix + op.key, op.cno))
n_add++;
}
return n_add;
}
/// get time required to obtain a given performance measure
double OperatingPoints::t_for_perf (double perf) const
{
const std::vector<OperatingPoint> & a = optimal_pts;
if (perf > a.back().perf) return 1e50;
int i0 = -1, i1 = a.size() - 1;
while (i0 + 1 < i1) {
int imed = (i0 + i1 + 1) / 2;
if (a[imed].perf < perf) i0 = imed;
else i1 = imed;
}
return a[i1].t;
}
void OperatingPoints::all_to_gnuplot (const char *fname) const
{
FILE *f = fopen(fname, "w");
if (!f) {
fprintf (stderr, "cannot open %s", fname);
perror("");
abort();
}
for (int i = 0; i < all_pts.size(); i++) {
const OperatingPoint & op = all_pts[i];
fprintf (f, "%g %g %s\n", op.perf, op.t, op.key.c_str());
}
fclose(f);
}
void OperatingPoints::optimal_to_gnuplot (const char *fname) const
{
FILE *f = fopen(fname, "w");
if (!f) {
fprintf (stderr, "cannot open %s", fname);
perror("");
abort();
}
double prev_perf = 0.0;
for (int i = 0; i < optimal_pts.size(); i++) {
const OperatingPoint & op = optimal_pts[i];
fprintf (f, "%g %g\n", prev_perf, op.t);
fprintf (f, "%g %g %s\n", op.perf, op.t, op.key.c_str());
prev_perf = op.perf;
}
fclose(f);
}
void OperatingPoints::display (bool only_optimal) const
{
const std::vector<OperatingPoint> &pts =
only_optimal ? optimal_pts : all_pts;
printf("Tested %ld operating points, %ld ones are optimal:\n",
all_pts.size(), optimal_pts.size());
for (int i = 0; i < pts.size(); i++) {
const OperatingPoint & op = pts[i];
const char *star = "";
if (!only_optimal) {
for (int j = 0; j < optimal_pts.size(); j++) {
if (op.cno == optimal_pts[j].cno) {
star = "*";
break;
}
}
}
printf ("cno=%ld key=%s perf=%.4f t=%.3f %s\n",
op.cno, op.key.c_str(), op.perf, op.t, star);
}
}
/***************************************************************
* ParameterSpace
***************************************************************/
ParameterSpace::ParameterSpace ():
verbose (1), n_experiments (500),
batchsize (1<<30), thread_over_batches (false),
min_test_duration (0)
{
}
/* not keeping this constructor as inheritors will call the parent
initialize()
*/
#if 0
ParameterSpace::ParameterSpace (Index *index):
verbose (1), n_experiments (500),
batchsize (1<<30), thread_over_batches (false)
{
initialize(index);
}
#endif
size_t ParameterSpace::n_combinations () const
{
size_t n = 1;
for (int i = 0; i < parameter_ranges.size(); i++)
n *= parameter_ranges[i].values.size();
return n;
}
/// get string representation of the combination
std::string ParameterSpace::combination_name (size_t cno) const {
char buf[1000], *wp = buf;
*wp = 0;
for (int i = 0; i < parameter_ranges.size(); i++) {
const ParameterRange & pr = parameter_ranges[i];
size_t j = cno % pr.values.size();
cno /= pr.values.size();
wp += snprintf (
wp, buf + 1000 - wp, "%s%s=%g", i == 0 ? "" : ",",
pr.name.c_str(), pr.values[j]);
}
return std::string (buf);
}
bool ParameterSpace::combination_ge (size_t c1, size_t c2) const
{
for (int i = 0; i < parameter_ranges.size(); i++) {
int nval = parameter_ranges[i].values.size();
size_t j1 = c1 % nval;
size_t j2 = c2 % nval;
if (!(j1 >= j2)) return false;
c1 /= nval;
c2 /= nval;
}
return true;
}
#define DC(classname) \
const classname *ix = dynamic_cast<const classname *>(index)
static void init_pq_ParameterRange (const ProductQuantizer & pq,
ParameterRange & pr)
{
if (pq.code_size % 4 == 0) {
// Polysemous not supported for code sizes that are not a
// multiple of 4
for (int i = 2; i <= pq.code_size * 8 / 2; i+= 2)
pr.values.push_back(i);
}
pr.values.push_back (pq.code_size * 8);
}
ParameterRange &ParameterSpace::add_range(const char * name)
{
for (auto & pr : parameter_ranges) {
if (pr.name == name) {
return pr;
}
}
parameter_ranges.push_back (ParameterRange ());
parameter_ranges.back ().name = name;
return parameter_ranges.back ();
}
/// initialize with reasonable parameters for the index
void ParameterSpace::initialize (const Index * index)
{
if (DC (IndexPreTransform)) {
index = ix->index;
}
if (DC (IndexRefineFlat)) {
ParameterRange & pr = add_range("k_factor_rf");
for (int i = 0; i <= 6; i++) {
pr.values.push_back (1 << i);
}
index = ix->base_index;
}
if (DC (IndexPreTransform)) {
index = ix->index;
}
if (DC (IndexIVF)) {
{
ParameterRange & pr = add_range("nprobe");
for (int i = 0; i < 13; i++) {
size_t nprobe = 1 << i;
if (nprobe >= ix->nlist) break;
pr.values.push_back (nprobe);
}
}
if (dynamic_cast<const IndexHNSW*>(ix->quantizer)) {
ParameterRange & pr = add_range("efSearch");
for (int i = 2; i <= 9; i++) {
pr.values.push_back (1 << i);
}
}
}
if (DC (IndexPQ)) {
ParameterRange & pr = add_range("ht");
init_pq_ParameterRange (ix->pq, pr);
}
if (DC (IndexIVFPQ)) {
ParameterRange & pr = add_range("ht");
init_pq_ParameterRange (ix->pq, pr);
}
if (DC (IndexIVF)) {
const MultiIndexQuantizer *miq =
dynamic_cast<const MultiIndexQuantizer *> (ix->quantizer);
if (miq) {
ParameterRange & pr_max_codes = add_range("max_codes");
for (int i = 8; i < 20; i++) {
pr_max_codes.values.push_back (1 << i);
}
pr_max_codes.values.push_back (
std::numeric_limits<double>::infinity()
);
}
}
if (DC (IndexIVFPQR)) {
ParameterRange & pr = add_range("k_factor");
for (int i = 0; i <= 6; i++) {
pr.values.push_back (1 << i);
}
}
if (dynamic_cast<const IndexHNSW*>(index)) {
ParameterRange & pr = add_range("efSearch");
for (int i = 2; i <= 9; i++) {
pr.values.push_back (1 << i);
}
}
}
#undef DC
// non-const version
#define DC(classname) classname *ix = dynamic_cast<classname *>(index)
/// set a combination of parameters on an index
void ParameterSpace::set_index_parameters (Index *index, size_t cno) const
{
for (int i = 0; i < parameter_ranges.size(); i++) {
const ParameterRange & pr = parameter_ranges[i];
size_t j = cno % pr.values.size();
cno /= pr.values.size();
double val = pr.values [j];
set_index_parameter (index, pr.name, val);
}
}
/// set a combination of parameters on an index
void ParameterSpace::set_index_parameters (
Index *index, const char *description_in) const
{
char description[strlen(description_in) + 1];
char *ptr;
memcpy (description, description_in, strlen(description_in) + 1);
for (char *tok = strtok_r (description, " ,", &ptr);
tok;
tok = strtok_r (nullptr, " ,", &ptr)) {
char name[100];
double val;
int ret = sscanf (tok, "%100[^=]=%lf", name, &val);
FAISS_THROW_IF_NOT_FMT (
ret == 2, "could not interpret parameters %s", tok);
set_index_parameter (index, name, val);
}
}
void ParameterSpace::set_index_parameter (
Index * index, const std::string & name, double val) const
{
if (verbose > 1)
printf(" set %s=%g\n", name.c_str(), val);
if (name == "verbose") {
index->verbose = int(val);
// and fall through to also enable it on sub-indexes
}
if (DC (IndexPreTransform)) {
set_index_parameter (ix->index, name, val);
return;
}
if (DC (IndexShards)) {
// call on all sub-indexes
auto fn =
[this, name, val](int, Index* subIndex) {
set_index_parameter(subIndex, name, val);
};
ix->runOnIndex(fn);
return;
}
if (DC (IndexReplicas)) {
// call on all sub-indexes
auto fn =
[this, name, val](int, Index* subIndex) {
set_index_parameter(subIndex, name, val);
};
ix->runOnIndex(fn);
return;
}
if (DC (IndexRefineFlat)) {
if (name == "k_factor_rf") {
ix->k_factor = int(val);
return;
}
// otherwise it is for the sub-index
set_index_parameter (&ix->refine_index, name, val);
return;
}
if (name == "verbose") {
index->verbose = int(val);
return; // last verbose that we could find
}
if (name == "nprobe") {
if (DC (IndexIDMap)) {
set_index_parameter (ix->index, name, val);
return;
} else if (DC (IndexIVF)) {
ix->nprobe = int(val);
return;
}
}
if (name == "ht") {
if (DC (IndexPQ)) {
if (val >= ix->pq.code_size * 8) {
ix->search_type = IndexPQ::ST_PQ;
} else {
ix->search_type = IndexPQ::ST_polysemous;
ix->polysemous_ht = int(val);
}
return;
} else if (DC (IndexIVFPQ)) {
if (val >= ix->pq.code_size * 8) {
ix->polysemous_ht = 0;
} else {
ix->polysemous_ht = int(val);
}
return;
}
}
if (name == "k_factor") {
if (DC (IndexIVFPQR)) {
ix->k_factor = val;
return;
}
}
if (name == "max_codes") {
if (DC (IndexIVF)) {
ix->max_codes = std::isfinite(val) ? size_t(val) : 0;
return;
}
}
if (name == "efSearch") {
if (DC (IndexHNSW)) {
ix->hnsw.efSearch = int(val);
return;
}
if (DC (IndexIVF)) {
if (IndexHNSW *cq =
dynamic_cast<IndexHNSW *>(ix->quantizer)) {
cq->hnsw.efSearch = int(val);
return;
}
}
}
FAISS_THROW_FMT ("ParameterSpace::set_index_parameter:"
"could not set parameter %s",
name.c_str());
}
void ParameterSpace::display () const
{
printf ("ParameterSpace, %ld parameters, %ld combinations:\n",
parameter_ranges.size (), n_combinations ());
for (int i = 0; i < parameter_ranges.size(); i++) {
const ParameterRange & pr = parameter_ranges[i];
printf (" %s: ", pr.name.c_str ());
char sep = '[';
for (int j = 0; j < pr.values.size(); j++) {
printf ("%c %g", sep, pr.values [j]);
sep = ',';
}
printf ("]\n");
}
}
void ParameterSpace::update_bounds (size_t cno, const OperatingPoint & op,
double *upper_bound_perf,
double *lower_bound_t) const
{
if (combination_ge (cno, op.cno)) {
if (op.t > *lower_bound_t) *lower_bound_t = op.t;
}
if (combination_ge (op.cno, cno)) {
if (op.perf < *upper_bound_perf) *upper_bound_perf = op.perf;
}
}
void ParameterSpace::explore (Index *index,
size_t nq, const float *xq,
const AutoTuneCriterion & crit,
OperatingPoints * ops) const
{
FAISS_THROW_IF_NOT_MSG (nq == crit.nq,
"criterion does not have the same nb of queries");
size_t n_comb = n_combinations ();
if (n_experiments == 0) {
for (size_t cno = 0; cno < n_comb; cno++) {
set_index_parameters (index, cno);
std::vector<Index::idx_t> I(nq * crit.nnn);
std::vector<float> D(nq * crit.nnn);
double t0 = getmillisecs ();
index->search (nq, xq, crit.nnn, D.data(), I.data());
double t_search = (getmillisecs() - t0) / 1e3;
double perf = crit.evaluate (D.data(), I.data());
bool keep = ops->add (perf, t_search, combination_name (cno), cno);
if (verbose)
printf(" %ld/%ld: %s perf=%.3f t=%.3f s %s\n", cno, n_comb,
combination_name (cno).c_str(), perf, t_search,
keep ? "*" : "");
}
return;
}
int n_exp = n_experiments;
if (n_exp > n_comb) n_exp = n_comb;
FAISS_THROW_IF_NOT (n_comb == 1 || n_exp > 2);
std::vector<int> perm (n_comb);
// make sure the slowest and fastest experiment are run
perm[0] = 0;
if (n_comb > 1) {
perm[1] = n_comb - 1;
rand_perm (&perm[2], n_comb - 2, 1234);
for (int i = 2; i < perm.size(); i++) perm[i] ++;
}
for (size_t xp = 0; xp < n_exp; xp++) {
size_t cno = perm[xp];
if (verbose)
printf(" %ld/%d: cno=%ld %s ", xp, n_exp, cno,
combination_name (cno).c_str());
{
double lower_bound_t = 0.0;
double upper_bound_perf = 1.0;
for (int i = 0; i < ops->all_pts.size(); i++) {
update_bounds (cno, ops->all_pts[i],
&upper_bound_perf, &lower_bound_t);
}
double best_t = ops->t_for_perf (upper_bound_perf);
if (verbose)
printf ("bounds [perf<=%.3f t>=%.3f] %s",
upper_bound_perf, lower_bound_t,
best_t <= lower_bound_t ? "skip\n" : "");
if (best_t <= lower_bound_t) continue;
}
set_index_parameters (index, cno);
std::vector<Index::idx_t> I(nq * crit.nnn);
std::vector<float> D(nq * crit.nnn);
double t0 = getmillisecs ();
int nrun = 0;
double t_search;
do {
if (thread_over_batches) {
#pragma omp parallel for
for (size_t q0 = 0; q0 < nq; q0 += batchsize) {
size_t q1 = q0 + batchsize;
if (q1 > nq) q1 = nq;
index->search (q1 - q0, xq + q0 * index->d,
crit.nnn,
D.data() + q0 * crit.nnn,
I.data() + q0 * crit.nnn);
}
} else {
for (size_t q0 = 0; q0 < nq; q0 += batchsize) {
size_t q1 = q0 + batchsize;
if (q1 > nq) q1 = nq;
index->search (q1 - q0, xq + q0 * index->d,
crit.nnn,
D.data() + q0 * crit.nnn,
I.data() + q0 * crit.nnn);
}
}
nrun ++;
t_search = (getmillisecs() - t0) / 1e3;
} while (t_search < min_test_duration);
t_search /= nrun;
double perf = crit.evaluate (D.data(), I.data());
bool keep = ops->add (perf, t_search, combination_name (cno), cno);
if (verbose)
printf(" perf %.3f t %.3f (%d runs) %s\n",
perf, t_search, nrun,
keep ? "*" : "");
}
}
} // namespace faiss

View File

@ -0,0 +1,212 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_AUTO_TUNE_H
#define FAISS_AUTO_TUNE_H
#include <vector>
#include <unordered_map>
#include <stdint.h>
#include <faiss/Index.h>
#include <faiss/IndexBinary.h>
namespace faiss {
/**
* Evaluation criterion. Returns a performance measure in [0,1],
* higher is better.
*/
struct AutoTuneCriterion {
typedef Index::idx_t idx_t;
idx_t nq; ///< nb of queries this criterion is evaluated on
idx_t nnn; ///< nb of NNs that the query should request
idx_t gt_nnn; ///< nb of GT NNs required to evaluate crterion
std::vector<float> gt_D; ///< Ground-truth distances (size nq * gt_nnn)
std::vector<idx_t> gt_I; ///< Ground-truth indexes (size nq * gt_nnn)
AutoTuneCriterion (idx_t nq, idx_t nnn);
/** Intitializes the gt_D and gt_I vectors. Must be called before evaluating
*
* @param gt_D_in size nq * gt_nnn
* @param gt_I_in size nq * gt_nnn
*/
void set_groundtruth (int gt_nnn, const float *gt_D_in,
const idx_t *gt_I_in);
/** Evaluate the criterion.
*
* @param D size nq * nnn
* @param I size nq * nnn
* @return the criterion, between 0 and 1. Larger is better.
*/
virtual double evaluate (const float *D, const idx_t *I) const = 0;
virtual ~AutoTuneCriterion () {}
};
struct OneRecallAtRCriterion: AutoTuneCriterion {
idx_t R;
OneRecallAtRCriterion (idx_t nq, idx_t R);
double evaluate(const float* D, const idx_t* I) const override;
~OneRecallAtRCriterion() override {}
};
struct IntersectionCriterion: AutoTuneCriterion {
idx_t R;
IntersectionCriterion (idx_t nq, idx_t R);
double evaluate(const float* D, const idx_t* I) const override;
~IntersectionCriterion() override {}
};
/**
* Maintains a list of experimental results. Each operating point is a
* (perf, t, key) triplet, where higher perf and lower t is
* better. The key field is an arbitrary identifier for the operating point
*/
struct OperatingPoint {
double perf; ///< performance measure (output of a Criterion)
double t; ///< corresponding execution time (ms)
std::string key; ///< key that identifies this op pt
int64_t cno; ///< integer identifer
};
struct OperatingPoints {
/// all operating points
std::vector<OperatingPoint> all_pts;
/// optimal operating points, sorted by perf
std::vector<OperatingPoint> optimal_pts;
// begins with a single operating point: t=0, perf=0
OperatingPoints ();
/// add operating points from other to this, with a prefix to the keys
int merge_with (const OperatingPoints &other,
const std::string & prefix = "");
void clear ();
/// add a performance measure. Return whether it is an optimal point
bool add (double perf, double t, const std::string & key, size_t cno = 0);
/// get time required to obtain a given performance measure
double t_for_perf (double perf) const;
/// easy-to-read output
void display (bool only_optimal = true) const;
/// output to a format easy to digest by gnuplot
void all_to_gnuplot (const char *fname) const;
void optimal_to_gnuplot (const char *fname) const;
};
/// possible values of a parameter, sorted from least to most expensive/accurate
struct ParameterRange {
std::string name;
std::vector<double> values;
};
/** Uses a-priori knowledge on the Faiss indexes to extract tunable parameters.
*/
struct ParameterSpace {
/// all tunable parameters
std::vector<ParameterRange> parameter_ranges;
// exploration parameters
/// verbosity during exploration
int verbose;
/// nb of experiments during optimization (0 = try all combinations)
int n_experiments;
/// maximum number of queries to submit at a time.
size_t batchsize;
/// use multithreading over batches (useful to benchmark
/// independent single-searches)
bool thread_over_batches;
/// run tests several times until they reach at least this
/// duration (to avoid jittering in MT mode)
double min_test_duration;
ParameterSpace ();
/// nb of combinations, = product of values sizes
size_t n_combinations () const;
/// returns whether combinations c1 >= c2 in the tuple sense
bool combination_ge (size_t c1, size_t c2) const;
/// get string representation of the combination
std::string combination_name (size_t cno) const;
/// print a description on stdout
void display () const;
/// add a new parameter (or return it if it exists)
ParameterRange &add_range(const char * name);
/// initialize with reasonable parameters for the index
virtual void initialize (const Index * index);
/// set a combination of parameters on an index
void set_index_parameters (Index *index, size_t cno) const;
/// set a combination of parameters described by a string
void set_index_parameters (Index *index, const char *param_string) const;
/// set one of the parameters
virtual void set_index_parameter (
Index * index, const std::string & name, double val) const;
/** find an upper bound on the performance and a lower bound on t
* for configuration cno given another operating point op */
void update_bounds (size_t cno, const OperatingPoint & op,
double *upper_bound_perf,
double *lower_bound_t) const;
/** explore operating points
* @param index index to run on
* @param xq query vectors (size nq * index.d)
* @param crit selection criterion
* @param ops resulting operating points
*/
void explore (Index *index,
size_t nq, const float *xq,
const AutoTuneCriterion & crit,
OperatingPoints * ops) const;
virtual ~ParameterSpace () {}
};
} // namespace faiss
#endif

View File

@ -0,0 +1,2 @@
# Code of Conduct
Facebook has adopted a Code of Conduct that we expect project participants to adhere to. Please [read the full text](https://code.fb.com/codeofconduct) so that you can understand what actions will and will not be tolerated.

View File

@ -0,0 +1,53 @@
# Contributing to Faiss
We want to make contributing to this project as easy and transparent as
possible.
## Our Development Process
We mainly develop Faiss within Facebook. Sometimes, we will sync the
github version of Faiss with the internal state.
## Pull Requests
We welcome pull requests that add significant value to Faiss. If you plan to do
a major development and contribute it back to Faiss, please contact us first before
putting too much effort into it.
1. Fork the repo and create your branch from `master`.
2. If you've added code that should be tested, add tests.
3. If you've changed APIs, update the documentation.
4. Ensure the test suite passes.
5. Make sure your code lints.
6. If you haven't already, complete the Contributor License Agreement ("CLA").
There is a Facebook internal test suite for Faiss, and we need to run
all changes to Faiss through it.
## Contributor License Agreement ("CLA")
In order to accept your pull request, we need you to submit a CLA. You only need
to do this once to work on any of Facebook's open source projects.
Complete your CLA here: <https://code.facebook.com/cla>
## Issues
We use GitHub issues to track public bugs. Please ensure your description is
clear and has sufficient instructions to be able to reproduce the issue.
Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
disclosure of security bugs. In those cases, please go through the process
outlined on that page and do not file a public issue.
## Coding Style
* 4 or 2 spaces for indentation in C++ (no tabs)
* 80 character line length (both for C++ and Python)
* C++ language level: C++11
## License
By contributing to Faiss, you agree that your contributions will be licensed
under the LICENSE file in the root directory of this source tree.

View File

@ -0,0 +1,261 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/Clustering.h>
#include <faiss/impl/AuxIndexStructures.h>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <faiss/utils/utils.h>
#include <faiss/utils/random.h>
#include <faiss/utils/distances.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/IndexFlat.h>
namespace faiss {
ClusteringParameters::ClusteringParameters ():
niter(25),
nredo(1),
verbose(false),
spherical(false),
int_centroids(false),
update_index(false),
frozen_centroids(false),
min_points_per_centroid(39),
max_points_per_centroid(256),
seed(1234)
{}
// 39 corresponds to 10000 / 256 -> to avoid warnings on PQ tests with randu10k
Clustering::Clustering (int d, int k):
d(d), k(k) {}
Clustering::Clustering (int d, int k, const ClusteringParameters &cp):
ClusteringParameters (cp), d(d), k(k) {}
static double imbalance_factor (int n, int k, int64_t *assign) {
std::vector<int> hist(k, 0);
for (int i = 0; i < n; i++)
hist[assign[i]]++;
double tot = 0, uf = 0;
for (int i = 0 ; i < k ; i++) {
tot += hist[i];
uf += hist[i] * (double) hist[i];
}
uf = uf * k / (tot * tot);
return uf;
}
void Clustering::post_process_centroids ()
{
if (spherical) {
fvec_renorm_L2 (d, k, centroids.data());
}
if (int_centroids) {
for (size_t i = 0; i < centroids.size(); i++)
centroids[i] = roundf (centroids[i]);
}
}
void Clustering::train (idx_t nx, const float *x_in, Index & index) {
FAISS_THROW_IF_NOT_FMT (nx >= k,
"Number of training points (%ld) should be at least "
"as large as number of clusters (%ld)", nx, k);
double t0 = getmillisecs();
// yes it is the user's responsibility, but it may spare us some
// hard-to-debug reports.
for (size_t i = 0; i < nx * d; i++) {
FAISS_THROW_IF_NOT_MSG (finite (x_in[i]),
"input contains NaN's or Inf's");
}
const float *x = x_in;
ScopeDeleter<float> del1;
if (nx > k * max_points_per_centroid) {
if (verbose)
printf("Sampling a subset of %ld / %ld for training\n",
k * max_points_per_centroid, nx);
std::vector<int> perm (nx);
rand_perm (perm.data (), nx, seed);
nx = k * max_points_per_centroid;
float * x_new = new float [nx * d];
for (idx_t i = 0; i < nx; i++)
memcpy (x_new + i * d, x + perm[i] * d, sizeof(x_new[0]) * d);
x = x_new;
del1.set (x);
} else if (nx < k * min_points_per_centroid) {
fprintf (stderr,
"WARNING clustering %ld points to %ld centroids: "
"please provide at least %ld training points\n",
nx, k, idx_t(k) * min_points_per_centroid);
}
if (nx == k) {
if (verbose) {
printf("Number of training points (%ld) same as number of "
"clusters, just copying\n", nx);
}
// this is a corner case, just copy training set to clusters
centroids.resize (d * k);
memcpy (centroids.data(), x_in, sizeof (*x_in) * d * k);
index.reset();
index.add(k, x_in);
return;
}
if (verbose)
printf("Clustering %d points in %ldD to %ld clusters, "
"redo %d times, %d iterations\n",
int(nx), d, k, nredo, niter);
idx_t * assign = new idx_t[nx];
ScopeDeleter<idx_t> del (assign);
float * dis = new float[nx];
ScopeDeleter<float> del2(dis);
// for redo
float best_err = HUGE_VALF;
std::vector<float> best_obj;
std::vector<float> best_centroids;
// support input centroids
FAISS_THROW_IF_NOT_MSG (
centroids.size() % d == 0,
"size of provided input centroids not a multiple of dimension");
size_t n_input_centroids = centroids.size() / d;
if (verbose && n_input_centroids > 0) {
printf (" Using %zd centroids provided as input (%sfrozen)\n",
n_input_centroids, frozen_centroids ? "" : "not ");
}
double t_search_tot = 0;
if (verbose) {
printf(" Preprocessing in %.2f s\n",
(getmillisecs() - t0) / 1000.);
}
t0 = getmillisecs();
for (int redo = 0; redo < nredo; redo++) {
if (verbose && nredo > 1) {
printf("Outer iteration %d / %d\n", redo, nredo);
}
// initialize remaining centroids with random points from the dataset
centroids.resize (d * k);
std::vector<int> perm (nx);
rand_perm (perm.data(), nx, seed + 1 + redo * 15486557L);
for (int i = n_input_centroids; i < k ; i++)
memcpy (&centroids[i * d], x + perm[i] * d,
d * sizeof (float));
post_process_centroids ();
if (index.ntotal != 0) {
index.reset();
}
if (!index.is_trained) {
index.train (k, centroids.data());
}
index.add (k, centroids.data());
float err = 0;
for (int i = 0; i < niter; i++) {
double t0s = getmillisecs();
index.search (nx, x, 1, dis, assign);
InterruptCallback::check();
t_search_tot += getmillisecs() - t0s;
err = 0;
for (int j = 0; j < nx; j++)
err += dis[j];
obj.push_back (err);
int nsplit = km_update_centroids (
x, centroids.data(),
assign, d, k, nx, frozen_centroids ? n_input_centroids : 0);
if (verbose) {
printf (" Iteration %d (%.2f s, search %.2f s): "
"objective=%g imbalance=%.3f nsplit=%d \r",
i, (getmillisecs() - t0) / 1000.0,
t_search_tot / 1000,
err, imbalance_factor (nx, k, assign),
nsplit);
fflush (stdout);
}
post_process_centroids ();
index.reset ();
if (update_index)
index.train (k, centroids.data());
assert (index.ntotal == 0);
index.add (k, centroids.data());
InterruptCallback::check ();
}
if (verbose) printf("\n");
if (nredo > 1) {
if (err < best_err) {
if (verbose)
printf ("Objective improved: keep new clusters\n");
best_centroids = centroids;
best_obj = obj;
best_err = err;
}
index.reset ();
}
}
if (nredo > 1) {
centroids = best_centroids;
obj = best_obj;
index.reset();
index.add(k, best_centroids.data());
}
}
float kmeans_clustering (size_t d, size_t n, size_t k,
const float *x,
float *centroids)
{
Clustering clus (d, k);
clus.verbose = d * n * k > (1L << 30);
// display logs if > 1Gflop per iteration
IndexFlatL2 index (d);
clus.train (n, x, index);
memcpy(centroids, clus.centroids.data(), sizeof(*centroids) * d * k);
return clus.obj.back();
}
} // namespace faiss

View File

@ -0,0 +1,101 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_CLUSTERING_H
#define FAISS_CLUSTERING_H
#include <faiss/Index.h>
#include <vector>
namespace faiss {
/** Class for the clustering parameters. Can be passed to the
* constructor of the Clustering object.
*/
struct ClusteringParameters {
int niter; ///< clustering iterations
int nredo; ///< redo clustering this many times and keep best
bool verbose;
bool spherical; ///< do we want normalized centroids?
bool int_centroids; ///< round centroids coordinates to integer
bool update_index; ///< update index after each iteration?
bool frozen_centroids; ///< use the centroids provided as input and do not change them during iterations
int min_points_per_centroid; ///< otherwise you get a warning
int max_points_per_centroid; ///< to limit size of dataset
int seed; ///< seed for the random number generator
/// sets reasonable defaults
ClusteringParameters ();
};
/** clustering based on assignment - centroid update iterations
*
* The clustering is based on an Index object that assigns training
* points to the centroids. Therefore, at each iteration the centroids
* are added to the index.
*
* On output, the centoids table is set to the latest version
* of the centroids and they are also added to the index. If the
* centroids table it is not empty on input, it is also used for
* initialization.
*
* To do several clusterings, just call train() several times on
* different training sets, clearing the centroid table in between.
*/
struct Clustering: ClusteringParameters {
typedef Index::idx_t idx_t;
size_t d; ///< dimension of the vectors
size_t k; ///< nb of centroids
/// centroids (k * d)
std::vector<float> centroids;
/// objective values (sum of distances reported by index) over
/// iterations
std::vector<float> obj;
/// the only mandatory parameters are k and d
Clustering (int d, int k);
Clustering (int d, int k, const ClusteringParameters &cp);
/// Index is used during the assignment stage
virtual void train (idx_t n, const float * x, faiss::Index & index);
/// Post-process the centroids after each centroid update.
/// includes optional L2 normalization and nearest integer rounding
void post_process_centroids ();
virtual ~Clustering() {}
};
/** simplified interface
*
* @param d dimension of the data
* @param n nb of training vectors
* @param k nb of output centroids
* @param x training set (size n * d)
* @param centroids output centroids (size k * d)
* @return final quantization error
*/
float kmeans_clustering (size_t d, size_t n, size_t k,
const float *x,
float *centroids);
}
#endif

View File

@ -0,0 +1,29 @@
FROM nvidia/cuda:8.0-devel-centos7
# Install MKL
RUN yum-config-manager --add-repo https://yum.repos.intel.com/mkl/setup/intel-mkl.repo
RUN rpm --import https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS-2019.PUB
RUN yum install -y intel-mkl-2019.3-062
ENV LD_LIBRARY_PATH /opt/intel/mkl/lib/intel64:$LD_LIBRARY_PATH
ENV LIBRARY_PATH /opt/intel/mkl/lib/intel64:$LIBRARY_PATH
ENV LD_PRELOAD /usr/lib64/libgomp.so.1:/opt/intel/mkl/lib/intel64/libmkl_def.so:\
/opt/intel/mkl/lib/intel64/libmkl_avx2.so:/opt/intel/mkl/lib/intel64/libmkl_core.so:\
/opt/intel/mkl/lib/intel64/libmkl_intel_lp64.so:/opt/intel/mkl/lib/intel64/libmkl_gnu_thread.so
# Install necessary build tools
RUN yum install -y gcc-c++ make swig3
# Install necesary headers/libs
RUN yum install -y python-devel numpy
COPY . /opt/faiss
WORKDIR /opt/faiss
# --with-cuda=/usr/local/cuda-8.0
RUN ./configure --prefix=/usr --libdir=/usr/lib64 --without-cuda
RUN make -j $(nproc)
RUN make -C python
RUN make test
RUN make install
RUN make -C demos demo_ivfpq_indexing && ./demos/demo_ivfpq_indexing

View File

@ -0,0 +1,353 @@
[//]: # "**********************************************************"
[//]: # "** INSTALL file for Faiss (Fair AI Similarity Search **"
[//]: # "**********************************************************"
INSTALL file for Faiss (Fair AI Similarity Search)
==================================================
Install via Conda
-----------------
The easiest way to install FAISS is from Anaconda. We regularly push stable releases to the pytorch conda channel.
Currently we support faiss-cpu both on Linux and OSX. We also provide faiss-gpu compiled with CUDA8/CUDA9/CUDA10 on Linux systems.
You can easily install it by
```
# CPU version only
conda install faiss-cpu -c pytorch
# GPU version
conda install faiss-gpu cudatoolkit=8.0 -c pytorch # For CUDA8
conda install faiss-gpu cudatoolkit=9.0 -c pytorch # For CUDA9
conda install faiss-gpu cudatoolkit=10.0 -c pytorch # For CUDA10
```
Compile from source
-------------------
The Faiss compilation works in 2 steps:
1. compile the C++ core and examples
2. compile the Python interface
Steps 2 depends on 1.
It is also possible to build a pure C interface. This optional process is
described separately (please see the [C interface installation file](c_api/INSTALL.md))
General compilation instructions
================================
TL;DR: `./configure && make (&& make install)` for the C++ library, and then `cd python; make && make install` for the python interface.
1. `./configure`
This generates the system-dependent configuration for the `Makefile`, stored in
a file called `makefile.inc`.
A few useful options:
- `./configure --without-cuda` in order to build the CPU part only.
- `./configure --with-cuda=/path/to/cuda-10.1` in order to hint to the path of
the cudatoolkit.
- `./configure --with-cuda-arch="-gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_72,code=sm_72"` for specifying which GPU architectures to build against.
- `./configure --with-python=/path/to/python3.7` in order to build a python
interface for a different python than the default one.
- `LDFLAGS=-L/path_to_mkl/lib/ ./configure` so that configure detects the MKL BLAS imeplementation. Note that this may require to set the LD_LIBRARY_PATH at runtime.
2. `make`
This builds the C++ library (the whole library if a suitable cuda toolkit was
found, or the CPU part only otherwise).
3. `make install` (optional)
This installs the headers and libraries.
4. `make -C python` (or `make py`)
This builds the python interface.
5. `make -C python install`
This installs the python library.
Faiss has been tested only on x86_64 machines on Linux and Mac OS.
Faiss requires a C++ compiler that understands:
- the Intel intrinsics for SSE instructions,
- the GCC intrinsic for the popcount instruction,
- basic OpenMP.
There are a few examples for makefile.inc in the example_makefiles/
subdirectory. There are also indications for specific configurations in the
troubleshooting section of the wiki.
https://github.com/facebookresearch/faiss/wiki/Troubleshooting
Faiss comes as a .a archive, that can be linked with executables or
dynamic libraries (useful for the Python wrapper).
BLAS/Lapack
-----------
The only variables that need to be configured for the C++ Faiss are
the BLAS/Lapack flags (a linear aglebra software package). It needs a
flag telling whether BLAS/Lapack uses 32 or 64 bit integers and the
linking flags. Faiss uses the Fortran 77 interface of BLAS/Lapack and
thus does not need an include path.
There are several BLAS implementations, depending on the OS and
machine. To have reasonable performance, the BLAS library should be
multithreaded. See the example makefile.inc's for hints and examples
on how to set the flags, or simply run the configure script:
`./configure`
To check that the link flags are correct, and verify whether the
implementation uses 32 or 64 bit integers, you can
`make misc/test_blas`
and run
`./misc/test_blas`
Testing Faiss
-------------
A basic usage example is in
`demos/demo_ivfpq_indexing`
which you can build by calling
`make -C demos demo_ivfpq_indexing`
It makes a small index, stores it and performs some searches. A normal
runtime is around 20s. With a fast machine and Intel MKL's BLAS it
runs in 2.5s.
To run the whole test suite:
`make test` (for the CPU part)
`make test_gpu` (for the GPU part)
A real-life benchmark
---------------------
A bit longer example runs and evaluates Faiss on the SIFT1M
dataset. To run it, please download the ANN_SIFT1M dataset from
http://corpus-texmex.irisa.fr/
and unzip it to the subdirectory `sift1M` at the root of the source
directory for this repository.
Then compile and run the following (after ensuring you have installed faiss):
```
make demos
./demos/demo_sift1M
```
This is a demonstration of the high-level auto-tuning API. You can try
setting a different index_key to find the indexing structure that
gives the best performance.
The Python interface
======================================
The Python interface is compiled with
`make -C python` (or `make py`)
How it works
------------
The Python interface is provided via SWIG (Simple Wrapper and
Interface Generator) and an additional level of manual wrappers (in python/faiss.py).
SWIG generates two wrapper files: a Python file (`python/swigfaiss.py`) and a
C++ file that must be compiled to a dynamic library (`python/_swigfaiss.so`).
Testing the Python wrapper
--------------------------
Often, a successful compile does not mean that the library works,
because missing symbols are detected only at runtime. You should be
able to load the Faiss dynamic library:
`python -c "import faiss"`
In case of failure, it reports the first missing symbol. To see all
missing symbols (on Linux), use
`ldd -r _swigfaiss.so`
Sometimes, problems (eg with BLAS libraries) appear only when actually
calling a BLAS function. A simple way to check this
```python
python -c "import faiss, numpy
faiss.Kmeans(10, 20).train(numpy.random.rand(1000, 10).astype('float32'))
```
Real-life test
--------------
The following script extends the demo_sift1M test to several types of
indexes. This must be run from the root of the source directory for this
repository:
```
mkdir tmp # graphs of the output will be written here
PYTHONPATH=. python demos/demo_auto_tune.py
```
It will cycle through a few types of indexes and find optimal
operating points. You can play around with the types of indexes.
Step 3: Compiling the GPU implementation
========================================
The GPU version is a superset of the CPU version. In addition it
requires the cuda compiler and related libraries (Cublas)
The nvcc-specific flags to pass to the compiler, based on your desired
compute capability can be customized by providing the `--with-cuda-arch` to
`./configure`. Only compute capability 3.5+ is supported. For example, we enable
by default:
```
-gencode=arch=compute_35,code=compute_35
-gencode=arch=compute_52,code=compute_52
-gencode=arch=compute_60,code=compute_60
-gencode=arch=compute_61,code=compute_61
-gencode=arch=compute_70,code=compute_70
-gencode=arch=compute_75,code=compute_75
```
However, look at https://developer.nvidia.com/cuda-gpus to determine
what compute capability you need to use, and replace our gencode
specifications with the one(s) you need.
Most other flags are related to the C++11 compiler used by nvcc to
complile the actual C++ code. They are normally just transmitted by
nvcc, except some of them that are not recognized and that should be
escaped by prefixing them with -Xcompiler. Also link flags that are
prefixed with -Wl, should be passed with -Xlinker.
You may want to add `-j 10` to use 10 threads during compile.
Testing the GPU implementation
------------------------------
Compile the example with
`make -C gpu/test demo_ivfpq_indexing_gpu`
This produce the GPU code equivalent to the CPU
demo_ivfpq_indexing. It also shows how to translate indexed from/to
the GPU.
Python example with GPU support
-------------------------------
The auto-tuning example above also runs on the GPU. Edit
`demos/demo_auto_tune.py` at line 100 with the values
```python
keys_to_test = keys_gpu
use_gpu = True
```
and you can run
```
export PYTHONPATH=.
python demos/demo_auto_tune.py
```
to test the GPU code.
Docker instructions
===================
For using GPU capabilities of Faiss, you'll need to run "nvidia-docker"
rather than "docker". Make sure that docker
(https://docs.docker.com/engine/installation/) and nvidia-docker
(https://github.com/NVIDIA/nvidia-docker) are installed on your system
To build the "faiss" image, run
`nvidia-docker build -t faiss .`
or if you don't want/need to clone the sources, just run
`nvidia-docker build -t faiss github.com/facebookresearch/faiss`
If you want to run the tests during the docker build, uncomment the
last 3 "RUN" steps in the Dockerfile. But you might want to run the
tests by yourself, so just run
`nvidia-docker run -ti --name faiss faiss bash`
and run what you want. If you need a dataset (like sift1M), download it
inside the created container, or better, mount a directory from the host
nvidia-docker run -ti --name faiss -v /my/host/data/folder/ann_dataset/sift/:/opt/faiss/sift1M faiss bash
How to use Faiss in your own projects
=====================================
C++
---
The makefile generates a static and a dynamic library
```
libfaiss.a
libfaiss.so (or libfaiss.dylib)
```
the executable should be linked to one of these. If you use
the static version (.a), add the LDFLAGS used in the Makefile.
For binary-only distributions, the headers should be under
a `faiss/` directory, so that they can be included as
```c++
#include <faiss/IndexIVFPQ.h>
#include <faiss/gpu/GpuIndexFlat.h>
```
Python
------
To import Faiss in your own Python project, you need the files
```
__init__.py
swigfaiss.py
_swigfaiss.so
```
to be present in a `faiss/` directory visible in the PYTHONPATH or in the
current directory.
Then Faiss can be used in python with
```python
import faiss
```

View File

@ -0,0 +1,344 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IVFlib.h>
#include <memory>
#include <faiss/IndexPreTransform.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/utils/utils.h>
namespace faiss { namespace ivflib {
void check_compatible_for_merge (const Index * index0,
const Index * index1)
{
const faiss::IndexPreTransform *pt0 =
dynamic_cast<const faiss::IndexPreTransform *>(index0);
if (pt0) {
const faiss::IndexPreTransform *pt1 =
dynamic_cast<const faiss::IndexPreTransform *>(index1);
FAISS_THROW_IF_NOT_MSG (pt1, "both indexes should be pretransforms");
FAISS_THROW_IF_NOT (pt0->chain.size() == pt1->chain.size());
for (int i = 0; i < pt0->chain.size(); i++) {
FAISS_THROW_IF_NOT (typeid(pt0->chain[i]) == typeid(pt1->chain[i]));
}
index0 = pt0->index;
index1 = pt1->index;
}
FAISS_THROW_IF_NOT (typeid(index0) == typeid(index1));
FAISS_THROW_IF_NOT (index0->d == index1->d &&
index0->metric_type == index1->metric_type);
const faiss::IndexIVF *ivf0 = dynamic_cast<const faiss::IndexIVF *>(index0);
if (ivf0) {
const faiss::IndexIVF *ivf1 =
dynamic_cast<const faiss::IndexIVF *>(index1);
FAISS_THROW_IF_NOT (ivf1);
ivf0->check_compatible_for_merge (*ivf1);
}
// TODO: check as thoroughfully for other index types
}
const IndexIVF * extract_index_ivf (const Index * index)
{
if (auto *pt =
dynamic_cast<const IndexPreTransform *>(index)) {
index = pt->index;
}
auto *ivf = dynamic_cast<const IndexIVF *>(index);
FAISS_THROW_IF_NOT (ivf);
return ivf;
}
IndexIVF * extract_index_ivf (Index * index) {
return const_cast<IndexIVF*> (extract_index_ivf ((const Index*)(index)));
}
void merge_into(faiss::Index *index0, faiss::Index *index1, bool shift_ids) {
check_compatible_for_merge (index0, index1);
IndexIVF * ivf0 = extract_index_ivf (index0);
IndexIVF * ivf1 = extract_index_ivf (index1);
ivf0->merge_from (*ivf1, shift_ids ? ivf0->ntotal : 0);
// useful for IndexPreTransform
index0->ntotal = ivf0->ntotal;
index1->ntotal = ivf1->ntotal;
}
void search_centroid(faiss::Index *index,
const float* x, int n,
idx_t* centroid_ids)
{
std::unique_ptr<float[]> del;
if (auto index_pre = dynamic_cast<faiss::IndexPreTransform*>(index)) {
x = index_pre->apply_chain(n, x);
del.reset((float*)x);
index = index_pre->index;
}
faiss::IndexIVF* index_ivf = dynamic_cast<faiss::IndexIVF*>(index);
assert(index_ivf);
index_ivf->quantizer->assign(n, x, centroid_ids);
}
void search_and_return_centroids(faiss::Index *index,
size_t n,
const float* xin,
long k,
float *distances,
idx_t* labels,
idx_t* query_centroid_ids,
idx_t* result_centroid_ids)
{
const float *x = xin;
std::unique_ptr<float []> del;
if (auto index_pre = dynamic_cast<faiss::IndexPreTransform*>(index)) {
x = index_pre->apply_chain(n, x);
del.reset((float*)x);
index = index_pre->index;
}
faiss::IndexIVF* index_ivf = dynamic_cast<faiss::IndexIVF*>(index);
assert(index_ivf);
size_t nprobe = index_ivf->nprobe;
std::vector<idx_t> cent_nos (n * nprobe);
std::vector<float> cent_dis (n * nprobe);
index_ivf->quantizer->search(
n, x, nprobe, cent_dis.data(), cent_nos.data());
if (query_centroid_ids) {
for (size_t i = 0; i < n; i++)
query_centroid_ids[i] = cent_nos[i * nprobe];
}
index_ivf->search_preassigned (n, x, k,
cent_nos.data(), cent_dis.data(),
distances, labels, true);
for (size_t i = 0; i < n * k; i++) {
idx_t label = labels[i];
if (label < 0) {
if (result_centroid_ids)
result_centroid_ids[i] = -1;
} else {
long list_no = label >> 32;
long list_index = label & 0xffffffff;
if (result_centroid_ids)
result_centroid_ids[i] = list_no;
labels[i] = index_ivf->invlists->get_single_id(list_no, list_index);
}
}
}
SlidingIndexWindow::SlidingIndexWindow (Index *index): index (index) {
n_slice = 0;
IndexIVF* index_ivf = const_cast<IndexIVF*>(extract_index_ivf (index));
ils = dynamic_cast<ArrayInvertedLists *> (index_ivf->invlists);
nlist = ils->nlist;
FAISS_THROW_IF_NOT_MSG (ils,
"only supports indexes with ArrayInvertedLists");
sizes.resize(nlist);
}
template<class T>
static void shift_and_add (std::vector<T> & dst,
size_t remove,
const std::vector<T> & src)
{
if (remove > 0)
memmove (dst.data(), dst.data() + remove,
(dst.size() - remove) * sizeof (T));
size_t insert_point = dst.size() - remove;
dst.resize (insert_point + src.size());
memcpy (dst.data() + insert_point, src.data (), src.size() * sizeof(T));
}
template<class T>
static void remove_from_begin (std::vector<T> & v,
size_t remove)
{
if (remove > 0)
v.erase (v.begin(), v.begin() + remove);
}
void SlidingIndexWindow::step(const Index *sub_index, bool remove_oldest) {
FAISS_THROW_IF_NOT_MSG (!remove_oldest || n_slice > 0,
"cannot remove slice: there is none");
const ArrayInvertedLists *ils2 = nullptr;
if(sub_index) {
check_compatible_for_merge (index, sub_index);
ils2 = dynamic_cast<const ArrayInvertedLists*>(
extract_index_ivf (sub_index)->invlists);
FAISS_THROW_IF_NOT_MSG (ils2, "supports only ArrayInvertedLists");
}
IndexIVF *index_ivf = extract_index_ivf (index);
if (remove_oldest && ils2) {
for (int i = 0; i < nlist; i++) {
std::vector<size_t> & sizesi = sizes[i];
size_t amount_to_remove = sizesi[0];
index_ivf->ntotal += ils2->ids[i].size() - amount_to_remove;
shift_and_add (ils->ids[i], amount_to_remove, ils2->ids[i]);
shift_and_add (ils->codes[i], amount_to_remove * ils->code_size,
ils2->codes[i]);
for (int j = 0; j + 1 < n_slice; j++) {
sizesi[j] = sizesi[j + 1] - amount_to_remove;
}
sizesi[n_slice - 1] = ils->ids[i].size();
}
} else if (ils2) {
for (int i = 0; i < nlist; i++) {
index_ivf->ntotal += ils2->ids[i].size();
shift_and_add (ils->ids[i], 0, ils2->ids[i]);
shift_and_add (ils->codes[i], 0, ils2->codes[i]);
sizes[i].push_back(ils->ids[i].size());
}
n_slice++;
} else if (remove_oldest) {
for (int i = 0; i < nlist; i++) {
size_t amount_to_remove = sizes[i][0];
index_ivf->ntotal -= amount_to_remove;
remove_from_begin (ils->ids[i], amount_to_remove);
remove_from_begin (ils->codes[i],
amount_to_remove * ils->code_size);
for (int j = 0; j + 1 < n_slice; j++) {
sizes[i][j] = sizes[i][j + 1] - amount_to_remove;
}
sizes[i].pop_back ();
}
n_slice--;
} else {
FAISS_THROW_MSG ("nothing to do???");
}
index->ntotal = index_ivf->ntotal;
}
// Get a subset of inverted lists [i0, i1). Works on IndexIVF's and
// IndexIVF's embedded in a IndexPreTransform
ArrayInvertedLists *
get_invlist_range (const Index *index, long i0, long i1)
{
const IndexIVF *ivf = extract_index_ivf (index);
FAISS_THROW_IF_NOT (0 <= i0 && i0 <= i1 && i1 <= ivf->nlist);
const InvertedLists *src = ivf->invlists;
ArrayInvertedLists * il = new ArrayInvertedLists(i1 - i0, src->code_size);
for (long i = i0; i < i1; i++) {
il->add_entries(i - i0, src->list_size(i),
InvertedLists::ScopedIds (src, i).get(),
InvertedLists::ScopedCodes (src, i).get());
}
return il;
}
void set_invlist_range (Index *index, long i0, long i1,
ArrayInvertedLists * src)
{
IndexIVF *ivf = extract_index_ivf (index);
FAISS_THROW_IF_NOT (0 <= i0 && i0 <= i1 && i1 <= ivf->nlist);
ArrayInvertedLists *dst = dynamic_cast<ArrayInvertedLists *>(ivf->invlists);
FAISS_THROW_IF_NOT_MSG (dst, "only ArrayInvertedLists supported");
FAISS_THROW_IF_NOT (src->nlist == i1 - i0 &&
dst->code_size == src->code_size);
size_t ntotal = index->ntotal;
for (long i = i0 ; i < i1; i++) {
ntotal -= dst->list_size (i);
ntotal += src->list_size (i - i0);
std::swap (src->codes[i - i0], dst->codes[i]);
std::swap (src->ids[i - i0], dst->ids[i]);
}
ivf->ntotal = index->ntotal = ntotal;
}
void search_with_parameters (const Index *index,
idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels,
IVFSearchParameters *params,
size_t *nb_dis_ptr)
{
FAISS_THROW_IF_NOT (params);
const float *prev_x = x;
ScopeDeleter<float> del;
if (auto ip = dynamic_cast<const IndexPreTransform *> (index)) {
x = ip->apply_chain (n, x);
if (x != prev_x) {
del.set(x);
}
index = ip->index;
}
std::vector<idx_t> Iq(params->nprobe * n);
std::vector<float> Dq(params->nprobe * n);
const IndexIVF *index_ivf = dynamic_cast<const IndexIVF *>(index);
FAISS_THROW_IF_NOT (index_ivf);
double t0 = getmillisecs();
index_ivf->quantizer->search(n, x, params->nprobe,
Dq.data(), Iq.data());
double t1 = getmillisecs();
indexIVF_stats.quantization_time += t1 - t0;
if (nb_dis_ptr) {
size_t nb_dis = 0;
const InvertedLists *il = index_ivf->invlists;
for (idx_t i = 0; i < n * params->nprobe; i++) {
if (Iq[i] >= 0) {
nb_dis += il->list_size(Iq[i]);
}
}
*nb_dis_ptr = nb_dis;
}
index_ivf->search_preassigned(n, x, k, Iq.data(), Dq.data(),
distances, labels,
false, params);
double t2 = getmillisecs();
indexIVF_stats.search_time += t2 - t1;
}
} } // namespace faiss::ivflib

132
core/src/index/thirdparty/faiss/IVFlib.h vendored Normal file
View File

@ -0,0 +1,132 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_IVFLIB_H
#define FAISS_IVFLIB_H
/** Since IVF (inverted file) indexes are of so much use for
* large-scale use cases, we group a few functions related to them in
* this small library. Most functions work both on IndexIVFs and
* IndexIVFs embedded within an IndexPreTransform.
*/
#include <vector>
#include <faiss/IndexIVF.h>
namespace faiss { namespace ivflib {
/** check if two indexes have the same parameters and are trained in
* the same way, otherwise throw. */
void check_compatible_for_merge (const Index * index1,
const Index * index2);
/** get an IndexIVF from an index. The index may be an IndexIVF or
* some wrapper class that encloses an IndexIVF
*
* throws an exception if this is not the case.
*/
const IndexIVF * extract_index_ivf (const Index * index);
IndexIVF * extract_index_ivf (Index * index);
/** Merge index1 into index0. Works on IndexIVF's and IndexIVF's
* embedded in a IndexPreTransform. On output, the index1 is empty.
*
* @param shift_ids: translate the ids from index1 to index0->prev_ntotal
*/
void merge_into(Index *index0, Index *index1, bool shift_ids);
typedef Index::idx_t idx_t;
/* Returns the cluster the embeddings belong to.
*
* @param index Index, which should be an IVF index
* (otherwise there are no clusters)
* @param embeddings object descriptors for which the centroids should be found,
* size num_objects * d
* @param centroid_ids
* cluster id each object belongs to, size num_objects
*/
void search_centroid(Index *index,
const float* x, int n,
idx_t* centroid_ids);
/* Returns the cluster the embeddings belong to.
*
* @param index Index, which should be an IVF index
* (otherwise there are no clusters)
* @param query_centroid_ids
* centroid ids corresponding to the query vectors (size n)
* @param result_centroid_ids
* centroid ids corresponding to the results (size n * k)
* other arguments are the same as the standard search function
*/
void search_and_return_centroids(Index *index,
size_t n,
const float* xin,
long k,
float *distances,
idx_t* labels,
idx_t* query_centroid_ids,
idx_t* result_centroid_ids);
/** A set of IndexIVFs concatenated together in a FIFO fashion.
* at each "step", the oldest index slice is removed and a new index is added.
*/
struct SlidingIndexWindow {
/// common index that contains the sliding window
Index * index;
/// InvertedLists of index
ArrayInvertedLists *ils;
/// number of slices currently in index
int n_slice;
/// same as index->nlist
size_t nlist;
/// cumulative list sizes at each slice
std::vector<std::vector<size_t> > sizes;
/// index should be initially empty and trained
SlidingIndexWindow (Index *index);
/** Add one index to the current index and remove the oldest one.
*
* @param sub_index slice to swap in (can be NULL)
* @param remove_oldest if true, remove the oldest slices */
void step(const Index *sub_index, bool remove_oldest);
};
/// Get a subset of inverted lists [i0, i1)
ArrayInvertedLists * get_invlist_range (const Index *index,
long i0, long i1);
/// Set a subset of inverted lists
void set_invlist_range (Index *index, long i0, long i1,
ArrayInvertedLists * src);
// search an IndexIVF, possibly embedded in an IndexPreTransform with
// given parameters. Optionally returns the number of distances
// computed
void search_with_parameters (const Index *index,
idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels,
IVFSearchParameters *params,
size_t *nb_dis = nullptr);
} } // namespace faiss::ivflib
#endif

View File

@ -0,0 +1,171 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/Index.h>
#include <faiss/impl/AuxIndexStructures.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/utils/distances.h>
#include <cstring>
namespace faiss {
Index::~Index ()
{
}
void Index::train(idx_t /*n*/, const float* /*x*/) {
// does nothing by default
}
void Index::range_search (idx_t , const float *, float,
RangeSearchResult *) const
{
FAISS_THROW_MSG ("range search not implemented");
}
void Index::assign (idx_t n, const float * x, idx_t * labels, idx_t k)
{
float * distances = new float[n * k];
ScopeDeleter<float> del(distances);
search (n, x, k, distances, labels);
}
void Index::add_with_ids(
idx_t /*n*/,
const float* /*x*/,
const idx_t* /*xids*/) {
FAISS_THROW_MSG ("add_with_ids not implemented for this type of index");
}
size_t Index::remove_ids(const IDSelector& /*sel*/) {
FAISS_THROW_MSG ("remove_ids not implemented for this type of index");
return -1;
}
void Index::reconstruct (idx_t, float * ) const {
FAISS_THROW_MSG ("reconstruct not implemented for this type of index");
}
void Index::reconstruct_n (idx_t i0, idx_t ni, float *recons) const {
for (idx_t i = 0; i < ni; i++) {
reconstruct (i0 + i, recons + i * d);
}
}
void Index::search_and_reconstruct (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels,
float *recons) const {
search (n, x, k, distances, labels);
for (idx_t i = 0; i < n; ++i) {
for (idx_t j = 0; j < k; ++j) {
idx_t ij = i * k + j;
idx_t key = labels[ij];
float* reconstructed = recons + ij * d;
if (key < 0) {
// Fill with NaNs
memset(reconstructed, -1, sizeof(*reconstructed) * d);
} else {
reconstruct (key, reconstructed);
}
}
}
}
void Index::compute_residual (const float * x,
float * residual, idx_t key) const {
reconstruct (key, residual);
for (size_t i = 0; i < d; i++) {
residual[i] = x[i] - residual[i];
}
}
void Index::compute_residual_n (idx_t n, const float* xs,
float* residuals,
const idx_t* keys) const {
#pragma omp parallel for
for (idx_t i = 0; i < n; ++i) {
compute_residual(&xs[i * d], &residuals[i * d], keys[i]);
}
}
size_t Index::sa_code_size () const
{
FAISS_THROW_MSG ("standalone codec not implemented for this type of index");
}
void Index::sa_encode (idx_t, const float *,
uint8_t *) const
{
FAISS_THROW_MSG ("standalone codec not implemented for this type of index");
}
void Index::sa_decode (idx_t, const uint8_t *,
float *) const
{
FAISS_THROW_MSG ("standalone codec not implemented for this type of index");
}
namespace {
// storage that explicitly reconstructs vectors before computing distances
struct GenericDistanceComputer : DistanceComputer {
size_t d;
const Index& storage;
std::vector<float> buf;
const float *q;
explicit GenericDistanceComputer(const Index& storage)
: storage(storage) {
d = storage.d;
buf.resize(d * 2);
}
float operator () (idx_t i) override {
storage.reconstruct(i, buf.data());
return fvec_L2sqr(q, buf.data(), d);
}
float symmetric_dis(idx_t i, idx_t j) override {
storage.reconstruct(i, buf.data());
storage.reconstruct(j, buf.data() + d);
return fvec_L2sqr(buf.data() + d, buf.data(), d);
}
void set_query(const float *x) override {
q = x;
}
};
} // namespace
DistanceComputer * Index::get_distance_computer() const {
if (metric_type == METRIC_L2) {
return new GenericDistanceComputer(*this);
} else {
FAISS_THROW_MSG ("get_distance_computer() not implemented");
}
}
}

261
core/src/index/thirdparty/faiss/Index.h vendored Normal file
View File

@ -0,0 +1,261 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_H
#define FAISS_INDEX_H
#include <cstdio>
#include <typeinfo>
#include <string>
#include <sstream>
#define FAISS_VERSION_MAJOR 1
#define FAISS_VERSION_MINOR 6
#define FAISS_VERSION_PATCH 0
/**
* @namespace faiss
*
* Throughout the library, vectors are provided as float * pointers.
* Most algorithms can be optimized when several vectors are processed
* (added/searched) together in a batch. In this case, they are passed
* in as a matrix. When n vectors of size d are provided as float * x,
* component j of vector i is
*
* x[ i * d + j ]
*
* where 0 <= i < n and 0 <= j < d. In other words, matrices are
* always compact. When specifying the size of the matrix, we call it
* an n*d matrix, which implies a row-major storage.
*/
namespace faiss {
/// Some algorithms support both an inner product version and a L2 search version.
enum MetricType {
METRIC_INNER_PRODUCT = 0, ///< maximum inner product search
METRIC_L2 = 1, ///< squared L2 search
METRIC_L1, ///< L1 (aka cityblock)
METRIC_Linf, ///< infinity distance
METRIC_Lp, ///< L_p distance, p is given by metric_arg
/// some additional metrics defined in scipy.spatial.distance
METRIC_Canberra = 20,
METRIC_BrayCurtis,
METRIC_JensenShannon,
};
/// Forward declarations see AuxIndexStructures.h
struct IDSelector;
struct RangeSearchResult;
struct DistanceComputer;
/** Abstract structure for an index
*
* Supports adding vertices and searching them.
*
* Currently only asymmetric queries are supported:
* database-to-database queries are not implemented.
*/
struct Index {
using idx_t = int64_t; ///< all indices are this type
using component_t = float;
using distance_t = float;
int d; ///< vector dimension
idx_t ntotal; ///< total nb of indexed vectors
bool verbose; ///< verbosity level
/// set if the Index does not require training, or if training is
/// done already
bool is_trained;
/// type of metric this index uses for search
MetricType metric_type;
float metric_arg; ///< argument of the metric type
explicit Index (idx_t d = 0, MetricType metric = METRIC_L2):
d(d),
ntotal(0),
verbose(false),
is_trained(true),
metric_type (metric),
metric_arg(0) {}
virtual ~Index ();
/** Perform training on a representative set of vectors
*
* @param n nb of training vectors
* @param x training vecors, size n * d
*/
virtual void train(idx_t n, const float* x);
/** Add n vectors of dimension d to the index.
*
* Vectors are implicitly assigned labels ntotal .. ntotal + n - 1
* This function slices the input vectors in chuncks smaller than
* blocksize_add and calls add_core.
* @param x input matrix, size n * d
*/
virtual void add (idx_t n, const float *x) = 0;
/** Same as add, but stores xids instead of sequential ids.
*
* The default implementation fails with an assertion, as it is
* not supported by all indexes.
*
* @param xids if non-null, ids to store for the vectors (size n)
*/
virtual void add_with_ids (idx_t n, const float * x, const idx_t *xids);
/** query n vectors of dimension d to the index.
*
* return at most k vectors. If there are not enough results for a
* query, the result array is padded with -1s.
*
* @param x input vectors to search, size n * d
* @param labels output labels of the NNs, size n*k
* @param distances output pairwise distances, size n*k
*/
virtual void search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const = 0;
/** query n vectors of dimension d to the index.
*
* return all vectors with distance < radius. Note that many
* indexes do not implement the range_search (only the k-NN search
* is mandatory).
*
* @param x input vectors to search, size n * d
* @param radius search radius
* @param result result table
*/
virtual void range_search (idx_t n, const float *x, float radius,
RangeSearchResult *result) const;
/** return the indexes of the k vectors closest to the query x.
*
* This function is identical as search but only return labels of neighbors.
* @param x input vectors to search, size n * d
* @param labels output labels of the NNs, size n*k
*/
void assign (idx_t n, const float * x, idx_t * labels, idx_t k = 1);
/// removes all elements from the database.
virtual void reset() = 0;
/** removes IDs from the index. Not supported by all
* indexes. Returns the number of elements removed.
*/
virtual size_t remove_ids (const IDSelector & sel);
/** Reconstruct a stored vector (or an approximation if lossy coding)
*
* this function may not be defined for some indexes
* @param key id of the vector to reconstruct
* @param recons reconstucted vector (size d)
*/
virtual void reconstruct (idx_t key, float * recons) const;
/** Reconstruct vectors i0 to i0 + ni - 1
*
* this function may not be defined for some indexes
* @param recons reconstucted vector (size ni * d)
*/
virtual void reconstruct_n (idx_t i0, idx_t ni, float *recons) const;
/** Similar to search, but also reconstructs the stored vectors (or an
* approximation in the case of lossy coding) for the search results.
*
* If there are not enough results for a query, the resulting arrays
* is padded with -1s.
*
* @param recons reconstructed vectors size (n, k, d)
**/
virtual void search_and_reconstruct (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels,
float *recons) const;
/** Computes a residual vector after indexing encoding.
*
* The residual vector is the difference between a vector and the
* reconstruction that can be decoded from its representation in
* the index. The residual can be used for multiple-stage indexing
* methods, like IndexIVF's methods.
*
* @param x input vector, size d
* @param residual output residual vector, size d
* @param key encoded index, as returned by search and assign
*/
virtual void compute_residual (const float * x,
float * residual, idx_t key) const;
/** Computes a residual vector after indexing encoding (batch form).
* Equivalent to calling compute_residual for each vector.
*
* The residual vector is the difference between a vector and the
* reconstruction that can be decoded from its representation in
* the index. The residual can be used for multiple-stage indexing
* methods, like IndexIVF's methods.
*
* @param n number of vectors
* @param xs input vectors, size (n x d)
* @param residuals output residual vectors, size (n x d)
* @param keys encoded index, as returned by search and assign
*/
virtual void compute_residual_n (idx_t n, const float* xs,
float* residuals,
const idx_t* keys) const;
/** Get a DistanceComputer (defined in AuxIndexStructures) object
* for this kind of index.
*
* DistanceComputer is implemented for indexes that support random
* access of their vectors.
*/
virtual DistanceComputer * get_distance_computer() const;
/* The standalone codec interface */
/** size of the produced codes in bytes */
virtual size_t sa_code_size () const;
/** encode a set of vectors
*
* @param n number of vectors
* @param x input vectors, size n * d
* @param bytes output encoded vectors, size n * sa_code_size()
*/
virtual void sa_encode (idx_t n, const float *x,
uint8_t *bytes) const;
/** encode a set of vectors
*
* @param n number of vectors
* @param bytes input encoded vectors, size n * sa_code_size()
* @param x output vectors, size n * d
*/
virtual void sa_decode (idx_t n, const uint8_t *bytes,
float *x) const;
};
}
#endif

View File

@ -0,0 +1,437 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/Index2Layer.h>
#include <cmath>
#include <cstdio>
#include <cassert>
#include <stdint.h>
#ifdef __SSE__
#include <immintrin.h>
#endif
#include <algorithm>
#include <faiss/IndexIVFPQ.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/utils/utils.h>
#include <faiss/impl/AuxIndexStructures.h>
#include <faiss/IndexFlat.h>
#include <faiss/utils/distances.h>
/*
#include <faiss/utils/Heap.h>
#include <faiss/Clustering.h>
#include <faiss/utils/hamming.h>
*/
namespace faiss {
using idx_t = Index::idx_t;
/*************************************
* Index2Layer implementation
*************************************/
Index2Layer::Index2Layer (Index * quantizer, size_t nlist,
int M, int nbit,
MetricType metric):
Index (quantizer->d, metric),
q1 (quantizer, nlist),
pq (quantizer->d, M, nbit)
{
is_trained = false;
for (int nbyte = 0; nbyte < 7; nbyte++) {
if ((1L << (8 * nbyte)) >= nlist) {
code_size_1 = nbyte;
break;
}
}
code_size_2 = pq.code_size;
code_size = code_size_1 + code_size_2;
}
Index2Layer::Index2Layer ()
{
code_size = code_size_1 = code_size_2 = 0;
}
Index2Layer::~Index2Layer ()
{}
void Index2Layer::train(idx_t n, const float* x)
{
if (verbose) {
printf ("training level-1 quantizer %ld vectors in %dD\n",
n, d);
}
q1.train_q1 (n, x, verbose, metric_type);
if (verbose) {
printf("computing residuals\n");
}
const float * x_in = x;
x = fvecs_maybe_subsample (
d, (size_t*)&n, pq.cp.max_points_per_centroid * pq.ksub,
x, verbose, pq.cp.seed);
ScopeDeleter<float> del_x (x_in == x ? nullptr : x);
std::vector<idx_t> assign(n); // assignement to coarse centroids
q1.quantizer->assign (n, x, assign.data());
std::vector<float> residuals(n * d);
for (idx_t i = 0; i < n; i++) {
q1.quantizer->compute_residual (
x + i * d, residuals.data() + i * d, assign[i]);
}
if (verbose)
printf ("training %zdx%zd product quantizer on %ld vectors in %dD\n",
pq.M, pq.ksub, n, d);
pq.verbose = verbose;
pq.train (n, residuals.data());
is_trained = true;
}
void Index2Layer::add(idx_t n, const float* x)
{
idx_t bs = 32768;
if (n > bs) {
for (idx_t i0 = 0; i0 < n; i0 += bs) {
idx_t i1 = std::min(i0 + bs, n);
if (verbose) {
printf("Index2Layer::add: adding %ld:%ld / %ld\n",
i0, i1, n);
}
add (i1 - i0, x + i0 * d);
}
return;
}
std::vector<idx_t> codes1 (n);
q1.quantizer->assign (n, x, codes1.data());
std::vector<float> residuals(n * d);
for (idx_t i = 0; i < n; i++) {
q1.quantizer->compute_residual (
x + i * d, residuals.data() + i * d, codes1[i]);
}
std::vector<uint8_t> codes2 (n * code_size_2);
pq.compute_codes (residuals.data(), codes2.data(), n);
codes.resize ((ntotal + n) * code_size);
uint8_t *wp = &codes[ntotal * code_size];
{
int i = 0x11223344;
const char *ip = (char*)&i;
FAISS_THROW_IF_NOT_MSG (ip[0] == 0x44,
"works only on a little-endian CPU");
}
// copy to output table
for (idx_t i = 0; i < n; i++) {
memcpy (wp, &codes1[i], code_size_1);
wp += code_size_1;
memcpy (wp, &codes2[i * code_size_2], code_size_2);
wp += code_size_2;
}
ntotal += n;
}
void Index2Layer::search(
idx_t /*n*/,
const float* /*x*/,
idx_t /*k*/,
float* /*distances*/,
idx_t* /*labels*/) const {
FAISS_THROW_MSG("not implemented");
}
void Index2Layer::reconstruct_n(idx_t i0, idx_t ni, float* recons) const
{
float recons1[d];
FAISS_THROW_IF_NOT (i0 >= 0 && i0 + ni <= ntotal);
const uint8_t *rp = &codes[i0 * code_size];
for (idx_t i = 0; i < ni; i++) {
idx_t key = 0;
memcpy (&key, rp, code_size_1);
q1.quantizer->reconstruct (key, recons1);
rp += code_size_1;
pq.decode (rp, recons);
for (idx_t j = 0; j < d; j++) {
recons[j] += recons1[j];
}
rp += code_size_2;
recons += d;
}
}
void Index2Layer::transfer_to_IVFPQ (IndexIVFPQ & other) const
{
FAISS_THROW_IF_NOT (other.nlist == q1.nlist);
FAISS_THROW_IF_NOT (other.code_size == code_size_2);
FAISS_THROW_IF_NOT (other.ntotal == 0);
const uint8_t *rp = codes.data();
for (idx_t i = 0; i < ntotal; i++) {
idx_t key = 0;
memcpy (&key, rp, code_size_1);
rp += code_size_1;
other.invlists->add_entry (key, i, rp);
rp += code_size_2;
}
other.ntotal = ntotal;
}
void Index2Layer::reconstruct(idx_t key, float* recons) const
{
reconstruct_n (key, 1, recons);
}
void Index2Layer::reset()
{
ntotal = 0;
codes.clear ();
}
namespace {
struct Distance2Level : DistanceComputer {
size_t d;
const Index2Layer& storage;
std::vector<float> buf;
const float *q;
const float *pq_l1_tab, *pq_l2_tab;
explicit Distance2Level(const Index2Layer& storage)
: storage(storage) {
d = storage.d;
FAISS_ASSERT(storage.pq.dsub == 4);
pq_l2_tab = storage.pq.centroids.data();
buf.resize(2 * d);
}
float symmetric_dis(idx_t i, idx_t j) override {
storage.reconstruct(i, buf.data());
storage.reconstruct(j, buf.data() + d);
return fvec_L2sqr(buf.data() + d, buf.data(), d);
}
void set_query(const float *x) override {
q = x;
}
};
// well optimized for xNN+PQNN
struct DistanceXPQ4 : Distance2Level {
int M, k;
explicit DistanceXPQ4(const Index2Layer& storage)
: Distance2Level (storage) {
const IndexFlat *quantizer =
dynamic_cast<IndexFlat*> (storage.q1.quantizer);
FAISS_ASSERT(quantizer);
M = storage.pq.M;
pq_l1_tab = quantizer->xb.data();
}
float operator () (idx_t i) override {
#ifdef __SSE__
const uint8_t *code = storage.codes.data() + i * storage.code_size;
long key = 0;
memcpy (&key, code, storage.code_size_1);
code += storage.code_size_1;
// walking pointers
const float *qa = q;
const __m128 *l1_t = (const __m128 *)(pq_l1_tab + d * key);
const __m128 *pq_l2_t = (const __m128 *)pq_l2_tab;
__m128 accu = _mm_setzero_ps();
for (int m = 0; m < M; m++) {
__m128 qi = _mm_loadu_ps(qa);
__m128 recons = l1_t[m] + pq_l2_t[*code++];
__m128 diff = qi - recons;
accu += diff * diff;
pq_l2_t += 256;
qa += 4;
}
accu = _mm_hadd_ps (accu, accu);
accu = _mm_hadd_ps (accu, accu);
return _mm_cvtss_f32 (accu);
#else
FAISS_THROW_MSG("not implemented for non-x64 platforms");
#endif
}
};
// well optimized for 2xNN+PQNN
struct Distance2xXPQ4 : Distance2Level {
int M_2, mi_nbits;
explicit Distance2xXPQ4(const Index2Layer& storage)
: Distance2Level(storage) {
const MultiIndexQuantizer *mi =
dynamic_cast<MultiIndexQuantizer*> (storage.q1.quantizer);
FAISS_ASSERT(mi);
FAISS_ASSERT(storage.pq.M % 2 == 0);
M_2 = storage.pq.M / 2;
mi_nbits = mi->pq.nbits;
pq_l1_tab = mi->pq.centroids.data();
}
float operator () (idx_t i) override {
const uint8_t *code = storage.codes.data() + i * storage.code_size;
long key01 = 0;
memcpy (&key01, code, storage.code_size_1);
code += storage.code_size_1;
#ifdef __SSE__
// walking pointers
const float *qa = q;
const __m128 *pq_l1_t = (const __m128 *)pq_l1_tab;
const __m128 *pq_l2_t = (const __m128 *)pq_l2_tab;
__m128 accu = _mm_setzero_ps();
for (int mi_m = 0; mi_m < 2; mi_m++) {
long l1_idx = key01 & ((1L << mi_nbits) - 1);
const __m128 * pq_l1 = pq_l1_t + M_2 * l1_idx;
for (int m = 0; m < M_2; m++) {
__m128 qi = _mm_loadu_ps(qa);
__m128 recons = pq_l1[m] + pq_l2_t[*code++];
__m128 diff = qi - recons;
accu += diff * diff;
pq_l2_t += 256;
qa += 4;
}
pq_l1_t += M_2 << mi_nbits;
key01 >>= mi_nbits;
}
accu = _mm_hadd_ps (accu, accu);
accu = _mm_hadd_ps (accu, accu);
return _mm_cvtss_f32 (accu);
#else
FAISS_THROW_MSG("not implemented for non-x64 platforms");
#endif
}
};
} // namespace
DistanceComputer * Index2Layer::get_distance_computer() const {
#ifdef __SSE__
const MultiIndexQuantizer *mi =
dynamic_cast<MultiIndexQuantizer*> (q1.quantizer);
if (mi && pq.M % 2 == 0 && pq.dsub == 4) {
return new Distance2xXPQ4(*this);
}
const IndexFlat *fl =
dynamic_cast<IndexFlat*> (q1.quantizer);
if (fl && pq.dsub == 4) {
return new DistanceXPQ4(*this);
}
#endif
return Index::get_distance_computer();
}
/* The standalone codec interface */
size_t Index2Layer::sa_code_size () const
{
return code_size;
}
void Index2Layer::sa_encode (idx_t n, const float *x, uint8_t *bytes) const
{
FAISS_THROW_IF_NOT (is_trained);
std::unique_ptr<int64_t []> list_nos (new int64_t [n]);
q1.quantizer->assign (n, x, list_nos.get());
std::vector<float> residuals(n * d);
for (idx_t i = 0; i < n; i++) {
q1.quantizer->compute_residual (
x + i * d, residuals.data() + i * d, list_nos[i]);
}
pq.compute_codes (residuals.data(), bytes, n);
for (idx_t i = n - 1; i >= 0; i--) {
uint8_t * code = bytes + i * code_size;
memmove (code + code_size_1,
bytes + i * code_size_2, code_size_2);
q1.encode_listno (list_nos[i], code);
}
}
void Index2Layer::sa_decode (idx_t n, const uint8_t *bytes, float *x) const
{
#pragma omp parallel
{
std::vector<float> residual (d);
#pragma omp for
for (size_t i = 0; i < n; i++) {
const uint8_t *code = bytes + i * code_size;
int64_t list_no = q1.decode_listno (code);
float *xi = x + i * d;
pq.decode (code + code_size_1, xi);
q1.quantizer->reconstruct (list_no, residual.data());
for (size_t j = 0; j < d; j++) {
xi[j] += residual[j];
}
}
}
}
} // namespace faiss

View File

@ -0,0 +1,85 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#pragma once
#include <vector>
#include <faiss/IndexPQ.h>
#include <faiss/IndexIVF.h>
namespace faiss {
struct IndexIVFPQ;
/** Same as an IndexIVFPQ without the inverted lists: codes are stored sequentially
*
* The class is mainly inteded to store encoded vectors that can be
* accessed randomly, the search function is not implemented.
*/
struct Index2Layer: Index {
/// first level quantizer
Level1Quantizer q1;
/// second level quantizer is always a PQ
ProductQuantizer pq;
/// Codes. Size ntotal * code_size.
std::vector<uint8_t> codes;
/// size of the code for the first level (ceil(log8(q1.nlist)))
size_t code_size_1;
/// size of the code for the second level
size_t code_size_2;
/// code_size_1 + code_size_2
size_t code_size;
Index2Layer (Index * quantizer, size_t nlist,
int M, int nbit = 8,
MetricType metric = METRIC_L2);
Index2Layer ();
~Index2Layer ();
void train(idx_t n, const float* x) override;
void add(idx_t n, const float* x) override;
/// not implemented
void search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels) const override;
void reconstruct_n(idx_t i0, idx_t ni, float* recons) const override;
void reconstruct(idx_t key, float* recons) const override;
void reset() override;
DistanceComputer * get_distance_computer() const override;
/// transfer the flat codes to an IVFPQ index
void transfer_to_IVFPQ(IndexIVFPQ & other) const;
/* The standalone codec interface */
size_t sa_code_size () const override;
void sa_encode (idx_t n, const float *x, uint8_t *bytes) const override;
void sa_decode (idx_t n, const uint8_t *bytes, float *x) const override;
};
} // namespace faiss

View File

@ -0,0 +1,77 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexBinary.h>
#include <faiss/impl/FaissAssert.h>
#include <cstring>
namespace faiss {
IndexBinary::~IndexBinary() {}
void IndexBinary::train(idx_t, const uint8_t *) {
// Does nothing by default.
}
void IndexBinary::range_search(idx_t, const uint8_t *, int,
RangeSearchResult *) const {
FAISS_THROW_MSG("range search not implemented");
}
void IndexBinary::assign(idx_t n, const uint8_t *x, idx_t *labels, idx_t k) {
int *distances = new int[n * k];
ScopeDeleter<int> del(distances);
search(n, x, k, distances, labels);
}
void IndexBinary::add_with_ids(idx_t, const uint8_t *, const idx_t *) {
FAISS_THROW_MSG("add_with_ids not implemented for this type of index");
}
size_t IndexBinary::remove_ids(const IDSelector&) {
FAISS_THROW_MSG("remove_ids not implemented for this type of index");
return 0;
}
void IndexBinary::reconstruct(idx_t, uint8_t *) const {
FAISS_THROW_MSG("reconstruct not implemented for this type of index");
}
void IndexBinary::reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const {
for (idx_t i = 0; i < ni; i++) {
reconstruct(i0 + i, recons + i * d);
}
}
void IndexBinary::search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels,
uint8_t *recons) const {
search(n, x, k, distances, labels);
for (idx_t i = 0; i < n; ++i) {
for (idx_t j = 0; j < k; ++j) {
idx_t ij = i * k + j;
idx_t key = labels[ij];
uint8_t *reconstructed = recons + ij * d;
if (key < 0) {
// Fill with NaNs
memset(reconstructed, -1, sizeof(*reconstructed) * d);
} else {
reconstruct(key, reconstructed);
}
}
}
}
void IndexBinary::display() const {
printf("Index: %s -> %ld elements\n", typeid (*this).name(), ntotal);
}
} // namespace faiss

View File

@ -0,0 +1,163 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_BINARY_H
#define FAISS_INDEX_BINARY_H
#include <cstdio>
#include <typeinfo>
#include <string>
#include <sstream>
#include <faiss/impl/FaissAssert.h>
#include <faiss/Index.h>
namespace faiss {
/// Forward declarations see AuxIndexStructures.h
struct IDSelector;
struct RangeSearchResult;
/** Abstract structure for a binary index.
*
* Supports adding vertices and searching them.
*
* All queries are symmetric because there is no distinction between codes and
* vectors.
*/
struct IndexBinary {
using idx_t = Index::idx_t; ///< all indices are this type
using component_t = uint8_t;
using distance_t = int32_t;
int d; ///< vector dimension
int code_size; ///< number of bytes per vector ( = d / 8 )
idx_t ntotal; ///< total nb of indexed vectors
bool verbose; ///< verbosity level
/// set if the Index does not require training, or if training is done already
bool is_trained;
/// type of metric this index uses for search
MetricType metric_type;
explicit IndexBinary(idx_t d = 0, MetricType metric = METRIC_L2)
: d(d),
code_size(d / 8),
ntotal(0),
verbose(false),
is_trained(true),
metric_type(metric) {
FAISS_THROW_IF_NOT(d % 8 == 0);
}
virtual ~IndexBinary();
/** Perform training on a representative set of vectors.
*
* @param n nb of training vectors
* @param x training vecors, size n * d / 8
*/
virtual void train(idx_t n, const uint8_t *x);
/** Add n vectors of dimension d to the index.
*
* Vectors are implicitly assigned labels ntotal .. ntotal + n - 1
* @param x input matrix, size n * d / 8
*/
virtual void add(idx_t n, const uint8_t *x) = 0;
/** Same as add, but stores xids instead of sequential ids.
*
* The default implementation fails with an assertion, as it is
* not supported by all indexes.
*
* @param xids if non-null, ids to store for the vectors (size n)
*/
virtual void add_with_ids(idx_t n, const uint8_t *x, const idx_t *xids);
/** Query n vectors of dimension d to the index.
*
* return at most k vectors. If there are not enough results for a
* query, the result array is padded with -1s.
*
* @param x input vectors to search, size n * d / 8
* @param labels output labels of the NNs, size n*k
* @param distances output pairwise distances, size n*k
*/
virtual void search(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels) const = 0;
/** Query n vectors of dimension d to the index.
*
* return all vectors with distance < radius. Note that many
* indexes do not implement the range_search (only the k-NN search
* is mandatory).
*
* @param x input vectors to search, size n * d / 8
* @param radius search radius
* @param result result table
*/
virtual void range_search(idx_t n, const uint8_t *x, int radius,
RangeSearchResult *result) const;
/** Return the indexes of the k vectors closest to the query x.
*
* This function is identical to search but only returns labels of neighbors.
* @param x input vectors to search, size n * d / 8
* @param labels output labels of the NNs, size n*k
*/
void assign(idx_t n, const uint8_t *x, idx_t *labels, idx_t k = 1);
/// Removes all elements from the database.
virtual void reset() = 0;
/** Removes IDs from the index. Not supported by all indexes.
*/
virtual size_t remove_ids(const IDSelector& sel);
/** Reconstruct a stored vector.
*
* This function may not be defined for some indexes.
* @param key id of the vector to reconstruct
* @param recons reconstucted vector (size d / 8)
*/
virtual void reconstruct(idx_t key, uint8_t *recons) const;
/** Reconstruct vectors i0 to i0 + ni - 1.
*
* This function may not be defined for some indexes.
* @param recons reconstucted vectors (size ni * d / 8)
*/
virtual void reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const;
/** Similar to search, but also reconstructs the stored vectors (or an
* approximation in the case of lossy coding) for the search results.
*
* If there are not enough results for a query, the resulting array
* is padded with -1s.
*
* @param recons reconstructed vectors size (n, k, d)
**/
virtual void search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels,
uint8_t *recons) const;
/** Display the actual class name and some more info. */
void display() const;
};
} // namespace faiss
#endif // FAISS_INDEX_BINARY_H

View File

@ -0,0 +1,83 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexBinaryFlat.h>
#include <cstring>
#include <faiss/utils/hamming.h>
#include <faiss/utils/utils.h>
#include <faiss/utils/Heap.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/impl/AuxIndexStructures.h>
namespace faiss {
IndexBinaryFlat::IndexBinaryFlat(idx_t d)
: IndexBinary(d) {}
void IndexBinaryFlat::add(idx_t n, const uint8_t *x) {
xb.insert(xb.end(), x, x + n * code_size);
ntotal += n;
}
void IndexBinaryFlat::reset() {
xb.clear();
ntotal = 0;
}
void IndexBinaryFlat::search(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels) const {
const idx_t block_size = query_batch_size;
for (idx_t s = 0; s < n; s += block_size) {
idx_t nn = block_size;
if (s + block_size > n) {
nn = n - s;
}
if (use_heap) {
// We see the distances and labels as heaps.
int_maxheap_array_t res = {
size_t(nn), size_t(k), labels + s * k, distances + s * k
};
hammings_knn_hc(&res, x + s * code_size, xb.data(), ntotal, code_size,
/* ordered = */ true);
} else {
hammings_knn_mc(x + s * code_size, xb.data(), nn, ntotal, k, code_size,
distances + s * k, labels + s * k);
}
}
}
size_t IndexBinaryFlat::remove_ids(const IDSelector& sel) {
idx_t j = 0;
for (idx_t i = 0; i < ntotal; i++) {
if (sel.is_member(i)) {
// should be removed
} else {
if (i > j) {
memmove(&xb[code_size * j], &xb[code_size * i], sizeof(xb[0]) * code_size);
}
j++;
}
}
long nremove = ntotal - j;
if (nremove > 0) {
ntotal = j;
xb.resize(ntotal * code_size);
}
return nremove;
}
void IndexBinaryFlat::reconstruct(idx_t key, uint8_t *recons) const {
memcpy(recons, &(xb[code_size * key]), sizeof(*recons) * code_size);
}
} // namespace faiss

View File

@ -0,0 +1,54 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef INDEX_BINARY_FLAT_H
#define INDEX_BINARY_FLAT_H
#include <vector>
#include <faiss/IndexBinary.h>
namespace faiss {
/** Index that stores the full vectors and performs exhaustive search. */
struct IndexBinaryFlat : IndexBinary {
/// database vectors, size ntotal * d / 8
std::vector<uint8_t> xb;
/** Select between using a heap or counting to select the k smallest values
* when scanning inverted lists.
*/
bool use_heap = true;
size_t query_batch_size = 32;
explicit IndexBinaryFlat(idx_t d);
void add(idx_t n, const uint8_t *x) override;
void reset() override;
void search(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels) const override;
void reconstruct(idx_t key, uint8_t *recons) const override;
/** Remove some ids. Note that because of the indexing structure,
* the semantics of this operation are different from the usual ones:
* the new ids are shifted. */
size_t remove_ids(const IDSelector& sel) override;
IndexBinaryFlat() {}
};
} // namespace faiss
#endif // INDEX_BINARY_FLAT_H

View File

@ -0,0 +1,78 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexBinaryFromFloat.h>
#include <memory>
#include <faiss/utils/utils.h>
namespace faiss {
IndexBinaryFromFloat::IndexBinaryFromFloat() {}
IndexBinaryFromFloat::IndexBinaryFromFloat(Index *index)
: IndexBinary(index->d),
index(index),
own_fields(false) {
is_trained = index->is_trained;
ntotal = index->ntotal;
}
IndexBinaryFromFloat::~IndexBinaryFromFloat() {
if (own_fields) {
delete index;
}
}
void IndexBinaryFromFloat::add(idx_t n, const uint8_t *x) {
constexpr idx_t bs = 32768;
std::unique_ptr<float[]> xf(new float[bs * d]);
for (idx_t b = 0; b < n; b += bs) {
idx_t bn = std::min(bs, n - b);
binary_to_real(bn * d, x + b * code_size, xf.get());
index->add(bn, xf.get());
}
ntotal = index->ntotal;
}
void IndexBinaryFromFloat::reset() {
index->reset();
ntotal = index->ntotal;
}
void IndexBinaryFromFloat::search(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels) const {
constexpr idx_t bs = 32768;
std::unique_ptr<float[]> xf(new float[bs * d]);
std::unique_ptr<float[]> df(new float[bs * k]);
for (idx_t b = 0; b < n; b += bs) {
idx_t bn = std::min(bs, n - b);
binary_to_real(bn * d, x + b * code_size, xf.get());
index->search(bn, xf.get(), k, df.get(), labels + b * k);
for (int i = 0; i < bn * k; ++i) {
distances[b * k + i] = int32_t(std::round(df[i] / 4.0));
}
}
}
void IndexBinaryFromFloat::train(idx_t n, const uint8_t *x) {
std::unique_ptr<float[]> xf(new float[n * d]);
binary_to_real(n * d, x, xf.get());
index->train(n, xf.get());
is_trained = true;
ntotal = index->ntotal;
}
} // namespace faiss

View File

@ -0,0 +1,52 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_BINARY_FROM_FLOAT_H
#define FAISS_INDEX_BINARY_FROM_FLOAT_H
#include <faiss/IndexBinary.h>
namespace faiss {
struct Index;
/** IndexBinary backed by a float Index.
*
* Supports adding vertices and searching them.
*
* All queries are symmetric because there is no distinction between codes and
* vectors.
*/
struct IndexBinaryFromFloat : IndexBinary {
Index *index = nullptr;
bool own_fields = false; ///< Whether object owns the index pointer.
IndexBinaryFromFloat();
explicit IndexBinaryFromFloat(Index *index);
~IndexBinaryFromFloat();
void add(idx_t n, const uint8_t *x) override;
void reset() override;
void search(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels) const override;
void train(idx_t n, const uint8_t *x) override;
};
} // namespace faiss
#endif // FAISS_INDEX_BINARY_FROM_FLOAT_H

View File

@ -0,0 +1,325 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexBinaryHNSW.h>
#include <memory>
#include <cstdlib>
#include <cassert>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <omp.h>
#include <unordered_set>
#include <queue>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdint.h>
#include <faiss/utils/random.h>
#include <faiss/utils/Heap.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/IndexBinaryFlat.h>
#include <faiss/utils/hamming.h>
#include <faiss/impl/AuxIndexStructures.h>
namespace faiss {
/**************************************************************
* add / search blocks of descriptors
**************************************************************/
namespace {
void hnsw_add_vertices(IndexBinaryHNSW& index_hnsw,
size_t n0,
size_t n, const uint8_t *x,
bool verbose,
bool preset_levels = false) {
HNSW& hnsw = index_hnsw.hnsw;
size_t ntotal = n0 + n;
double t0 = getmillisecs();
if (verbose) {
printf("hnsw_add_vertices: adding %ld elements on top of %ld "
"(preset_levels=%d)\n",
n, n0, int(preset_levels));
}
int max_level = hnsw.prepare_level_tab(n, preset_levels);
if (verbose) {
printf(" max_level = %d\n", max_level);
}
std::vector<omp_lock_t> locks(ntotal);
for(int i = 0; i < ntotal; i++) {
omp_init_lock(&locks[i]);
}
// add vectors from highest to lowest level
std::vector<int> hist;
std::vector<int> order(n);
{ // make buckets with vectors of the same level
// build histogram
for (int i = 0; i < n; i++) {
HNSW::storage_idx_t pt_id = i + n0;
int pt_level = hnsw.levels[pt_id] - 1;
while (pt_level >= hist.size()) {
hist.push_back(0);
}
hist[pt_level] ++;
}
// accumulate
std::vector<int> offsets(hist.size() + 1, 0);
for (int i = 0; i < hist.size() - 1; i++) {
offsets[i + 1] = offsets[i] + hist[i];
}
// bucket sort
for (int i = 0; i < n; i++) {
HNSW::storage_idx_t pt_id = i + n0;
int pt_level = hnsw.levels[pt_id] - 1;
order[offsets[pt_level]++] = pt_id;
}
}
{ // perform add
RandomGenerator rng2(789);
int i1 = n;
for (int pt_level = hist.size() - 1; pt_level >= 0; pt_level--) {
int i0 = i1 - hist[pt_level];
if (verbose) {
printf("Adding %d elements at level %d\n",
i1 - i0, pt_level);
}
// random permutation to get rid of dataset order bias
for (int j = i0; j < i1; j++) {
std::swap(order[j], order[j + rng2.rand_int(i1 - j)]);
}
#pragma omp parallel
{
VisitedTable vt (ntotal);
std::unique_ptr<DistanceComputer> dis(
index_hnsw.get_distance_computer()
);
int prev_display = verbose && omp_get_thread_num() == 0 ? 0 : -1;
#pragma omp for schedule(dynamic)
for (int i = i0; i < i1; i++) {
HNSW::storage_idx_t pt_id = order[i];
dis->set_query((float *)(x + (pt_id - n0) * index_hnsw.code_size));
hnsw.add_with_locks(*dis, pt_level, pt_id, locks, vt);
if (prev_display >= 0 && i - i0 > prev_display + 10000) {
prev_display = i - i0;
printf(" %d / %d\r", i - i0, i1 - i0);
fflush(stdout);
}
}
}
i1 = i0;
}
FAISS_ASSERT(i1 == 0);
}
if (verbose) {
printf("Done in %.3f ms\n", getmillisecs() - t0);
}
for(int i = 0; i < ntotal; i++)
omp_destroy_lock(&locks[i]);
}
} // anonymous namespace
/**************************************************************
* IndexBinaryHNSW implementation
**************************************************************/
IndexBinaryHNSW::IndexBinaryHNSW()
{
is_trained = true;
}
IndexBinaryHNSW::IndexBinaryHNSW(int d, int M)
: IndexBinary(d),
hnsw(M),
own_fields(true),
storage(new IndexBinaryFlat(d))
{
is_trained = true;
}
IndexBinaryHNSW::IndexBinaryHNSW(IndexBinary *storage, int M)
: IndexBinary(storage->d),
hnsw(M),
own_fields(false),
storage(storage)
{
is_trained = true;
}
IndexBinaryHNSW::~IndexBinaryHNSW() {
if (own_fields) {
delete storage;
}
}
void IndexBinaryHNSW::train(idx_t n, const uint8_t *x)
{
// hnsw structure does not require training
storage->train(n, x);
is_trained = true;
}
void IndexBinaryHNSW::search(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels) const
{
#pragma omp parallel
{
VisitedTable vt(ntotal);
std::unique_ptr<DistanceComputer> dis(get_distance_computer());
#pragma omp for
for(idx_t i = 0; i < n; i++) {
idx_t *idxi = labels + i * k;
float *simi = (float *)(distances + i * k);
dis->set_query((float *)(x + i * code_size));
maxheap_heapify(k, simi, idxi);
hnsw.search(*dis, k, idxi, simi, vt);
maxheap_reorder(k, simi, idxi);
}
}
#pragma omp parallel for
for (int i = 0; i < n * k; ++i) {
distances[i] = std::round(((float *)distances)[i]);
}
}
void IndexBinaryHNSW::add(idx_t n, const uint8_t *x)
{
FAISS_THROW_IF_NOT(is_trained);
int n0 = ntotal;
storage->add(n, x);
ntotal = storage->ntotal;
hnsw_add_vertices(*this, n0, n, x, verbose,
hnsw.levels.size() == ntotal);
}
void IndexBinaryHNSW::reset()
{
hnsw.reset();
storage->reset();
ntotal = 0;
}
void IndexBinaryHNSW::reconstruct(idx_t key, uint8_t *recons) const
{
storage->reconstruct(key, recons);
}
namespace {
template<class HammingComputer>
struct FlatHammingDis : DistanceComputer {
const int code_size;
const uint8_t *b;
size_t ndis;
HammingComputer hc;
float operator () (idx_t i) override {
ndis++;
return hc.hamming(b + i * code_size);
}
float symmetric_dis(idx_t i, idx_t j) override {
return HammingComputerDefault(b + j * code_size, code_size)
.hamming(b + i * code_size);
}
explicit FlatHammingDis(const IndexBinaryFlat& storage)
: code_size(storage.code_size),
b(storage.xb.data()),
ndis(0),
hc() {}
// NOTE: Pointers are cast from float in order to reuse the floating-point
// DistanceComputer.
void set_query(const float *x) override {
hc.set((uint8_t *)x, code_size);
}
~FlatHammingDis() override {
#pragma omp critical
{
hnsw_stats.ndis += ndis;
}
}
};
} // namespace
DistanceComputer *IndexBinaryHNSW::get_distance_computer() const {
IndexBinaryFlat *flat_storage = dynamic_cast<IndexBinaryFlat *>(storage);
FAISS_ASSERT(flat_storage != nullptr);
switch(code_size) {
case 4:
return new FlatHammingDis<HammingComputer4>(*flat_storage);
case 8:
return new FlatHammingDis<HammingComputer8>(*flat_storage);
case 16:
return new FlatHammingDis<HammingComputer16>(*flat_storage);
case 20:
return new FlatHammingDis<HammingComputer20>(*flat_storage);
case 32:
return new FlatHammingDis<HammingComputer32>(*flat_storage);
case 64:
return new FlatHammingDis<HammingComputer64>(*flat_storage);
default:
if (code_size % 8 == 0) {
return new FlatHammingDis<HammingComputerM8>(*flat_storage);
} else if (code_size % 4 == 0) {
return new FlatHammingDis<HammingComputerM4>(*flat_storage);
}
}
return new FlatHammingDis<HammingComputerDefault>(*flat_storage);
}
} // namespace faiss

View File

@ -0,0 +1,56 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#pragma once
#include <faiss/impl/HNSW.h>
#include <faiss/IndexBinaryFlat.h>
#include <faiss/utils/utils.h>
namespace faiss {
/** The HNSW index is a normal random-access index with a HNSW
* link structure built on top */
struct IndexBinaryHNSW : IndexBinary {
typedef HNSW::storage_idx_t storage_idx_t;
// the link strcuture
HNSW hnsw;
// the sequential storage
bool own_fields;
IndexBinary *storage;
explicit IndexBinaryHNSW();
explicit IndexBinaryHNSW(int d, int M = 32);
explicit IndexBinaryHNSW(IndexBinary *storage, int M = 32);
~IndexBinaryHNSW() override;
DistanceComputer *get_distance_computer() const;
void add(idx_t n, const uint8_t *x) override;
/// Trains the storage if needed
void train(idx_t n, const uint8_t* x) override;
/// entry point for search
void search(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels) const override;
void reconstruct(idx_t key, uint8_t* recons) const override;
void reset() override;
};
} // namespace faiss

View File

@ -0,0 +1,671 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// Copyright 2004-present Facebook. All Rights Reserved
// -*- c++ -*-
#include <faiss/IndexBinaryIVF.h>
#include <cstdio>
#include <memory>
#include <faiss/utils/hamming.h>
#include <faiss/utils/utils.h>
#include <faiss/impl/AuxIndexStructures.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/IndexFlat.h>
namespace faiss {
IndexBinaryIVF::IndexBinaryIVF(IndexBinary *quantizer, size_t d, size_t nlist)
: IndexBinary(d),
invlists(new ArrayInvertedLists(nlist, code_size)),
own_invlists(true),
nprobe(1),
max_codes(0),
maintain_direct_map(false),
quantizer(quantizer),
nlist(nlist),
own_fields(false),
clustering_index(nullptr)
{
FAISS_THROW_IF_NOT (d == quantizer->d);
is_trained = quantizer->is_trained && (quantizer->ntotal == nlist);
cp.niter = 10;
}
IndexBinaryIVF::IndexBinaryIVF()
: invlists(nullptr),
own_invlists(false),
nprobe(1),
max_codes(0),
maintain_direct_map(false),
quantizer(nullptr),
nlist(0),
own_fields(false),
clustering_index(nullptr)
{}
void IndexBinaryIVF::add(idx_t n, const uint8_t *x) {
add_with_ids(n, x, nullptr);
}
void IndexBinaryIVF::add_with_ids(idx_t n, const uint8_t *x, const idx_t *xids) {
add_core(n, x, xids, nullptr);
}
void IndexBinaryIVF::add_core(idx_t n, const uint8_t *x, const idx_t *xids,
const idx_t *precomputed_idx) {
FAISS_THROW_IF_NOT(is_trained);
assert(invlists);
FAISS_THROW_IF_NOT_MSG(!(maintain_direct_map && xids),
"cannot have direct map and add with ids");
const idx_t * idx;
std::unique_ptr<idx_t[]> scoped_idx;
if (precomputed_idx) {
idx = precomputed_idx;
} else {
scoped_idx.reset(new idx_t[n]);
quantizer->assign(n, x, scoped_idx.get());
idx = scoped_idx.get();
}
long n_add = 0;
for (size_t i = 0; i < n; i++) {
idx_t id = xids ? xids[i] : ntotal + i;
idx_t list_no = idx[i];
if (list_no < 0)
continue;
const uint8_t *xi = x + i * code_size;
size_t offset = invlists->add_entry(list_no, id, xi);
if (maintain_direct_map)
direct_map.push_back(list_no << 32 | offset);
n_add++;
}
if (verbose) {
printf("IndexBinaryIVF::add_with_ids: added %ld / %ld vectors\n",
n_add, n);
}
ntotal += n_add;
}
void IndexBinaryIVF::make_direct_map(bool new_maintain_direct_map) {
// nothing to do
if (new_maintain_direct_map == maintain_direct_map)
return;
if (new_maintain_direct_map) {
direct_map.resize(ntotal, -1);
for (size_t key = 0; key < nlist; key++) {
size_t list_size = invlists->list_size(key);
const idx_t *idlist = invlists->get_ids(key);
for (size_t ofs = 0; ofs < list_size; ofs++) {
FAISS_THROW_IF_NOT_MSG(0 <= idlist[ofs] && idlist[ofs] < ntotal,
"direct map supported only for seuquential ids");
direct_map[idlist[ofs]] = key << 32 | ofs;
}
}
} else {
direct_map.clear();
}
maintain_direct_map = new_maintain_direct_map;
}
void IndexBinaryIVF::search(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels) const {
std::unique_ptr<idx_t[]> idx(new idx_t[n * nprobe]);
std::unique_ptr<int32_t[]> coarse_dis(new int32_t[n * nprobe]);
double t0 = getmillisecs();
quantizer->search(n, x, nprobe, coarse_dis.get(), idx.get());
indexIVF_stats.quantization_time += getmillisecs() - t0;
t0 = getmillisecs();
invlists->prefetch_lists(idx.get(), n * nprobe);
search_preassigned(n, x, k, idx.get(), coarse_dis.get(),
distances, labels, false);
indexIVF_stats.search_time += getmillisecs() - t0;
}
void IndexBinaryIVF::reconstruct(idx_t key, uint8_t *recons) const {
FAISS_THROW_IF_NOT_MSG(direct_map.size() == ntotal,
"direct map is not initialized");
idx_t list_no = direct_map[key] >> 32;
idx_t offset = direct_map[key] & 0xffffffff;
reconstruct_from_offset(list_no, offset, recons);
}
void IndexBinaryIVF::reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const {
FAISS_THROW_IF_NOT(ni == 0 || (i0 >= 0 && i0 + ni <= ntotal));
for (idx_t list_no = 0; list_no < nlist; list_no++) {
size_t list_size = invlists->list_size(list_no);
const Index::idx_t *idlist = invlists->get_ids(list_no);
for (idx_t offset = 0; offset < list_size; offset++) {
idx_t id = idlist[offset];
if (!(id >= i0 && id < i0 + ni)) {
continue;
}
uint8_t *reconstructed = recons + (id - i0) * d;
reconstruct_from_offset(list_no, offset, reconstructed);
}
}
}
void IndexBinaryIVF::search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels,
uint8_t *recons) const {
std::unique_ptr<idx_t[]> idx(new idx_t[n * nprobe]);
std::unique_ptr<int32_t[]> coarse_dis(new int32_t[n * nprobe]);
quantizer->search(n, x, nprobe, coarse_dis.get(), idx.get());
invlists->prefetch_lists(idx.get(), n * nprobe);
// search_preassigned() with `store_pairs` enabled to obtain the list_no
// and offset into `codes` for reconstruction
search_preassigned(n, x, k, idx.get(), coarse_dis.get(),
distances, labels, /* store_pairs */true);
for (idx_t i = 0; i < n; ++i) {
for (idx_t j = 0; j < k; ++j) {
idx_t ij = i * k + j;
idx_t key = labels[ij];
uint8_t *reconstructed = recons + ij * d;
if (key < 0) {
// Fill with NaNs
memset(reconstructed, -1, sizeof(*reconstructed) * d);
} else {
int list_no = key >> 32;
int offset = key & 0xffffffff;
// Update label to the actual id
labels[ij] = invlists->get_single_id(list_no, offset);
reconstruct_from_offset(list_no, offset, reconstructed);
}
}
}
}
void IndexBinaryIVF::reconstruct_from_offset(idx_t list_no, idx_t offset,
uint8_t *recons) const {
memcpy(recons, invlists->get_single_code(list_no, offset), code_size);
}
void IndexBinaryIVF::reset() {
direct_map.clear();
invlists->reset();
ntotal = 0;
}
size_t IndexBinaryIVF::remove_ids(const IDSelector& sel) {
FAISS_THROW_IF_NOT_MSG(!maintain_direct_map,
"direct map remove not implemented");
std::vector<idx_t> toremove(nlist);
#pragma omp parallel for
for (idx_t i = 0; i < nlist; i++) {
idx_t l0 = invlists->list_size (i), l = l0, j = 0;
const idx_t *idsi = invlists->get_ids(i);
while (j < l) {
if (sel.is_member(idsi[j])) {
l--;
invlists->update_entry(
i, j,
invlists->get_single_id(i, l),
invlists->get_single_code(i, l));
} else {
j++;
}
}
toremove[i] = l0 - l;
}
// this will not run well in parallel on ondisk because of possible shrinks
size_t nremove = 0;
for (idx_t i = 0; i < nlist; i++) {
if (toremove[i] > 0) {
nremove += toremove[i];
invlists->resize(
i, invlists->list_size(i) - toremove[i]);
}
}
ntotal -= nremove;
return nremove;
}
void IndexBinaryIVF::train(idx_t n, const uint8_t *x) {
if (verbose) {
printf("Training quantizer\n");
}
if (quantizer->is_trained && (quantizer->ntotal == nlist)) {
if (verbose) {
printf("IVF quantizer does not need training.\n");
}
} else {
if (verbose) {
printf("Training quantizer on %ld vectors in %dD\n", n, d);
}
Clustering clus(d, nlist, cp);
quantizer->reset();
std::unique_ptr<float[]> x_f(new float[n * d]);
binary_to_real(n * d, x, x_f.get());
IndexFlatL2 index_tmp(d);
if (clustering_index && verbose) {
printf("using clustering_index of dimension %d to do the clustering\n",
clustering_index->d);
}
clus.train(n, x_f.get(), clustering_index ? *clustering_index : index_tmp);
std::unique_ptr<uint8_t[]> x_b(new uint8_t[clus.k * code_size]);
real_to_binary(d * clus.k, clus.centroids.data(), x_b.get());
quantizer->add(clus.k, x_b.get());
quantizer->is_trained = true;
}
is_trained = true;
}
void IndexBinaryIVF::merge_from(IndexBinaryIVF &other, idx_t add_id) {
// minimal sanity checks
FAISS_THROW_IF_NOT(other.d == d);
FAISS_THROW_IF_NOT(other.nlist == nlist);
FAISS_THROW_IF_NOT(other.code_size == code_size);
FAISS_THROW_IF_NOT_MSG((!maintain_direct_map &&
!other.maintain_direct_map),
"direct map copy not implemented");
FAISS_THROW_IF_NOT_MSG(typeid (*this) == typeid (other),
"can only merge indexes of the same type");
invlists->merge_from (other.invlists, add_id);
ntotal += other.ntotal;
other.ntotal = 0;
}
void IndexBinaryIVF::replace_invlists(InvertedLists *il, bool own) {
FAISS_THROW_IF_NOT(il->nlist == nlist &&
il->code_size == code_size);
if (own_invlists) {
delete invlists;
}
invlists = il;
own_invlists = own;
}
namespace {
using idx_t = Index::idx_t;
template<class HammingComputer, bool store_pairs>
struct IVFBinaryScannerL2: BinaryInvertedListScanner {
HammingComputer hc;
size_t code_size;
IVFBinaryScannerL2 (size_t code_size): code_size (code_size)
{}
void set_query (const uint8_t *query_vector) override {
hc.set (query_vector, code_size);
}
idx_t list_no;
void set_list (idx_t list_no, uint8_t /* coarse_dis */) override {
this->list_no = list_no;
}
uint32_t distance_to_code (const uint8_t *code) const override {
return hc.hamming (code);
}
size_t scan_codes (size_t n,
const uint8_t *codes,
const idx_t *ids,
int32_t *simi, idx_t *idxi,
size_t k) const override
{
using C = CMax<int32_t, idx_t>;
size_t nup = 0;
for (size_t j = 0; j < n; j++) {
uint32_t dis = hc.hamming (codes);
if (dis < simi[0]) {
heap_pop<C> (k, simi, idxi);
idx_t id = store_pairs ? (list_no << 32 | j) : ids[j];
heap_push<C> (k, simi, idxi, dis, id);
nup++;
}
codes += code_size;
}
return nup;
}
};
template <bool store_pairs>
BinaryInvertedListScanner *select_IVFBinaryScannerL2 (size_t code_size) {
switch (code_size) {
#define HANDLE_CS(cs) \
case cs: \
return new IVFBinaryScannerL2<HammingComputer ## cs, store_pairs> (cs);
HANDLE_CS(4);
HANDLE_CS(8);
HANDLE_CS(16);
HANDLE_CS(20);
HANDLE_CS(32);
HANDLE_CS(64);
#undef HANDLE_CS
default:
if (code_size % 8 == 0) {
return new IVFBinaryScannerL2<HammingComputerM8,
store_pairs> (code_size);
} else if (code_size % 4 == 0) {
return new IVFBinaryScannerL2<HammingComputerM4,
store_pairs> (code_size);
} else {
return new IVFBinaryScannerL2<HammingComputerDefault,
store_pairs> (code_size);
}
}
}
void search_knn_hamming_heap(const IndexBinaryIVF& ivf,
size_t n,
const uint8_t *x,
idx_t k,
const idx_t *keys,
const int32_t * coarse_dis,
int32_t *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params)
{
long nprobe = params ? params->nprobe : ivf.nprobe;
long max_codes = params ? params->max_codes : ivf.max_codes;
MetricType metric_type = ivf.metric_type;
// almost verbatim copy from IndexIVF::search_preassigned
size_t nlistv = 0, ndis = 0, nheap = 0;
using HeapForIP = CMin<int32_t, idx_t>;
using HeapForL2 = CMax<int32_t, idx_t>;
#pragma omp parallel if(n > 1) reduction(+: nlistv, ndis, nheap)
{
std::unique_ptr<BinaryInvertedListScanner> scanner
(ivf.get_InvertedListScanner (store_pairs));
#pragma omp for
for (size_t i = 0; i < n; i++) {
const uint8_t *xi = x + i * ivf.code_size;
scanner->set_query(xi);
const idx_t * keysi = keys + i * nprobe;
int32_t * simi = distances + k * i;
idx_t * idxi = labels + k * i;
if (metric_type == METRIC_INNER_PRODUCT) {
heap_heapify<HeapForIP> (k, simi, idxi);
} else {
heap_heapify<HeapForL2> (k, simi, idxi);
}
size_t nscan = 0;
for (size_t ik = 0; ik < nprobe; ik++) {
idx_t key = keysi[ik]; /* select the list */
if (key < 0) {
// not enough centroids for multiprobe
continue;
}
FAISS_THROW_IF_NOT_FMT
(key < (idx_t) ivf.nlist,
"Invalid key=%ld at ik=%ld nlist=%ld\n",
key, ik, ivf.nlist);
scanner->set_list (key, coarse_dis[i * nprobe + ik]);
nlistv++;
size_t list_size = ivf.invlists->list_size(key);
InvertedLists::ScopedCodes scodes (ivf.invlists, key);
std::unique_ptr<InvertedLists::ScopedIds> sids;
const Index::idx_t * ids = nullptr;
if (!store_pairs) {
sids.reset (new InvertedLists::ScopedIds (ivf.invlists, key));
ids = sids->get();
}
nheap += scanner->scan_codes (list_size, scodes.get(),
ids, simi, idxi, k);
nscan += list_size;
if (max_codes && nscan >= max_codes)
break;
}
ndis += nscan;
if (metric_type == METRIC_INNER_PRODUCT) {
heap_reorder<HeapForIP> (k, simi, idxi);
} else {
heap_reorder<HeapForL2> (k, simi, idxi);
}
} // parallel for
} // parallel
indexIVF_stats.nq += n;
indexIVF_stats.nlist += nlistv;
indexIVF_stats.ndis += ndis;
indexIVF_stats.nheap_updates += nheap;
}
template<class HammingComputer, bool store_pairs>
void search_knn_hamming_count(const IndexBinaryIVF& ivf,
size_t nx,
const uint8_t *x,
const idx_t *keys,
int k,
int32_t *distances,
idx_t *labels,
const IVFSearchParameters *params) {
const int nBuckets = ivf.d + 1;
std::vector<int> all_counters(nx * nBuckets, 0);
std::unique_ptr<idx_t[]> all_ids_per_dis(new idx_t[nx * nBuckets * k]);
long nprobe = params ? params->nprobe : ivf.nprobe;
long max_codes = params ? params->max_codes : ivf.max_codes;
std::vector<HCounterState<HammingComputer>> cs;
for (size_t i = 0; i < nx; ++i) {
cs.push_back(HCounterState<HammingComputer>(
all_counters.data() + i * nBuckets,
all_ids_per_dis.get() + i * nBuckets * k,
x + i * ivf.code_size,
ivf.d,
k
));
}
size_t nlistv = 0, ndis = 0;
#pragma omp parallel for reduction(+: nlistv, ndis)
for (size_t i = 0; i < nx; i++) {
const idx_t * keysi = keys + i * nprobe;
HCounterState<HammingComputer>& csi = cs[i];
size_t nscan = 0;
for (size_t ik = 0; ik < nprobe; ik++) {
idx_t key = keysi[ik]; /* select the list */
if (key < 0) {
// not enough centroids for multiprobe
continue;
}
FAISS_THROW_IF_NOT_FMT (
key < (idx_t) ivf.nlist,
"Invalid key=%ld at ik=%ld nlist=%ld\n",
key, ik, ivf.nlist);
nlistv++;
size_t list_size = ivf.invlists->list_size(key);
InvertedLists::ScopedCodes scodes (ivf.invlists, key);
const uint8_t *list_vecs = scodes.get();
const Index::idx_t *ids = store_pairs
? nullptr
: ivf.invlists->get_ids(key);
for (size_t j = 0; j < list_size; j++) {
const uint8_t * yj = list_vecs + ivf.code_size * j;
idx_t id = store_pairs ? (key << 32 | j) : ids[j];
csi.update_counter(yj, id);
}
if (ids)
ivf.invlists->release_ids (key, ids);
nscan += list_size;
if (max_codes && nscan >= max_codes)
break;
}
ndis += nscan;
int nres = 0;
for (int b = 0; b < nBuckets && nres < k; b++) {
for (int l = 0; l < csi.counters[b] && nres < k; l++) {
labels[i * k + nres] = csi.ids_per_dis[b * k + l];
distances[i * k + nres] = b;
nres++;
}
}
while (nres < k) {
labels[i * k + nres] = -1;
distances[i * k + nres] = std::numeric_limits<int32_t>::max();
++nres;
}
}
indexIVF_stats.nq += nx;
indexIVF_stats.nlist += nlistv;
indexIVF_stats.ndis += ndis;
}
template<bool store_pairs>
void search_knn_hamming_count_1 (
const IndexBinaryIVF& ivf,
size_t nx,
const uint8_t *x,
const idx_t *keys,
int k,
int32_t *distances,
idx_t *labels,
const IVFSearchParameters *params) {
switch (ivf.code_size) {
#define HANDLE_CS(cs) \
case cs: \
search_knn_hamming_count<HammingComputer ## cs, store_pairs>( \
ivf, nx, x, keys, k, distances, labels, params); \
break;
HANDLE_CS(4);
HANDLE_CS(8);
HANDLE_CS(16);
HANDLE_CS(20);
HANDLE_CS(32);
HANDLE_CS(64);
#undef HANDLE_CS
default:
if (ivf.code_size % 8 == 0) {
search_knn_hamming_count<HammingComputerM8, store_pairs>
(ivf, nx, x, keys, k, distances, labels, params);
} else if (ivf.code_size % 4 == 0) {
search_knn_hamming_count<HammingComputerM4, store_pairs>
(ivf, nx, x, keys, k, distances, labels, params);
} else {
search_knn_hamming_count<HammingComputerDefault, store_pairs>
(ivf, nx, x, keys, k, distances, labels, params);
}
break;
}
}
} // namespace
BinaryInvertedListScanner *IndexBinaryIVF::get_InvertedListScanner
(bool store_pairs) const
{
if (store_pairs) {
return select_IVFBinaryScannerL2<true> (code_size);
} else {
return select_IVFBinaryScannerL2<false> (code_size);
}
}
void IndexBinaryIVF::search_preassigned(idx_t n, const uint8_t *x, idx_t k,
const idx_t *idx,
const int32_t * coarse_dis,
int32_t *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params
) const {
if (use_heap) {
search_knn_hamming_heap (*this, n, x, k, idx, coarse_dis,
distances, labels, store_pairs,
params);
} else {
if (store_pairs) {
search_knn_hamming_count_1<true>
(*this, n, x, idx, k, distances, labels, params);
} else {
search_knn_hamming_count_1<false>
(*this, n, x, idx, k, distances, labels, params);
}
}
}
IndexBinaryIVF::~IndexBinaryIVF() {
if (own_invlists) {
delete invlists;
}
if (own_fields) {
delete quantizer;
}
}
} // namespace faiss

View File

@ -0,0 +1,211 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_BINARY_IVF_H
#define FAISS_INDEX_BINARY_IVF_H
#include <vector>
#include <faiss/IndexBinary.h>
#include <faiss/IndexIVF.h>
#include <faiss/Clustering.h>
#include <faiss/utils/Heap.h>
namespace faiss {
struct BinaryInvertedListScanner;
/** Index based on a inverted file (IVF)
*
* In the inverted file, the quantizer (an IndexBinary instance) provides a
* quantization index for each vector to be added. The quantization
* index maps to a list (aka inverted list or posting list), where the
* id of the vector is stored.
*
* Otherwise the object is similar to the IndexIVF
*/
struct IndexBinaryIVF : IndexBinary {
/// Acess to the actual data
InvertedLists *invlists;
bool own_invlists;
size_t nprobe; ///< number of probes at query time
size_t max_codes; ///< max nb of codes to visit to do a query
/** Select between using a heap or counting to select the k smallest values
* when scanning inverted lists.
*/
bool use_heap = true;
/// map for direct access to the elements. Enables reconstruct().
bool maintain_direct_map;
std::vector<idx_t> direct_map;
IndexBinary *quantizer; ///< quantizer that maps vectors to inverted lists
size_t nlist; ///< number of possible key values
bool own_fields; ///< whether object owns the quantizer
ClusteringParameters cp; ///< to override default clustering params
Index *clustering_index; ///< to override index used during clustering
/** The Inverted file takes a quantizer (an IndexBinary) on input,
* which implements the function mapping a vector to a list
* identifier. The pointer is borrowed: the quantizer should not
* be deleted while the IndexBinaryIVF is in use.
*/
IndexBinaryIVF(IndexBinary *quantizer, size_t d, size_t nlist);
IndexBinaryIVF();
~IndexBinaryIVF() override;
void reset() override;
/// Trains the quantizer
void train(idx_t n, const uint8_t *x) override;
void add(idx_t n, const uint8_t *x) override;
void add_with_ids(idx_t n, const uint8_t *x, const idx_t *xids) override;
/// same as add_with_ids, with precomputed coarse quantizer
void add_core (idx_t n, const uint8_t * x, const idx_t *xids,
const idx_t *precomputed_idx);
/** Search a set of vectors, that are pre-quantized by the IVF
* quantizer. Fill in the corresponding heaps with the query
* results. search() calls this.
*
* @param n nb of vectors to query
* @param x query vectors, size nx * d
* @param assign coarse quantization indices, size nx * nprobe
* @param centroid_dis
* distances to coarse centroids, size nx * nprobe
* @param distance
* output distances, size n * k
* @param labels output labels, size n * k
* @param store_pairs store inv list index + inv list offset
* instead in upper/lower 32 bit of result,
* instead of ids (used for reranking).
* @param params used to override the object's search parameters
*/
void search_preassigned(idx_t n, const uint8_t *x, idx_t k,
const idx_t *assign,
const int32_t *centroid_dis,
int32_t *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params=nullptr
) const;
virtual BinaryInvertedListScanner *get_InvertedListScanner (
bool store_pairs=false) const;
/** assign the vectors, then call search_preassign */
virtual void search(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels) const override;
void reconstruct(idx_t key, uint8_t *recons) const override;
/** Reconstruct a subset of the indexed vectors.
*
* Overrides default implementation to bypass reconstruct() which requires
* direct_map to be maintained.
*
* @param i0 first vector to reconstruct
* @param ni nb of vectors to reconstruct
* @param recons output array of reconstructed vectors, size ni * d / 8
*/
void reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const override;
/** Similar to search, but also reconstructs the stored vectors (or an
* approximation in the case of lossy coding) for the search results.
*
* Overrides default implementation to avoid having to maintain direct_map
* and instead fetch the code offsets through the `store_pairs` flag in
* search_preassigned().
*
* @param recons reconstructed vectors size (n, k, d / 8)
*/
void search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels,
uint8_t *recons) const override;
/** Reconstruct a vector given the location in terms of (inv list index +
* inv list offset) instead of the id.
*
* Useful for reconstructing when the direct_map is not maintained and
* the inv list offset is computed by search_preassigned() with
* `store_pairs` set.
*/
virtual void reconstruct_from_offset(idx_t list_no, idx_t offset,
uint8_t* recons) const;
/// Dataset manipulation functions
size_t remove_ids(const IDSelector& sel) override;
/** moves the entries from another dataset to self. On output,
* other is empty. add_id is added to all moved ids (for
* sequential ids, this would be this->ntotal */
virtual void merge_from(IndexBinaryIVF& other, idx_t add_id);
size_t get_list_size(size_t list_no) const
{ return invlists->list_size(list_no); }
/** intialize a direct map
*
* @param new_maintain_direct_map if true, create a direct map,
* else clear it
*/
void make_direct_map(bool new_maintain_direct_map=true);
void replace_invlists(InvertedLists *il, bool own=false);
};
struct BinaryInvertedListScanner {
using idx_t = Index::idx_t;
/// from now on we handle this query.
virtual void set_query (const uint8_t *query_vector) = 0;
/// following codes come from this inverted list
virtual void set_list (idx_t list_no, uint8_t coarse_dis) = 0;
/// compute a single query-to-code distance
virtual uint32_t distance_to_code (const uint8_t *code) const = 0;
/** compute the distances to codes. (distances, labels) should be
* organized as a min- or max-heap
*
* @param n number of codes to scan
* @param codes codes to scan (n * code_size)
* @param ids corresponding ids (ignored if store_pairs)
* @param distances heap distances (size k)
* @param labels heap labels (size k)
* @param k heap size
*/
virtual size_t scan_codes (size_t n,
const uint8_t *codes,
const idx_t *ids,
int32_t *distances, idx_t *labels,
size_t k) const = 0;
virtual ~BinaryInvertedListScanner () {}
};
} // namespace faiss
#endif // FAISS_INDEX_BINARY_IVF_H

View File

@ -0,0 +1,508 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexFlat.h>
#include <cstring>
#include <faiss/utils/distances.h>
#include <faiss/utils/extra_distances.h>
#include <faiss/utils/utils.h>
#include <faiss/utils/Heap.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/impl/AuxIndexStructures.h>
namespace faiss {
IndexFlat::IndexFlat (idx_t d, MetricType metric):
Index(d, metric)
{
}
void IndexFlat::add (idx_t n, const float *x) {
xb.insert(xb.end(), x, x + n * d);
ntotal += n;
}
void IndexFlat::reset() {
xb.clear();
ntotal = 0;
}
void IndexFlat::search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const
{
// we see the distances and labels as heaps
if (metric_type == METRIC_INNER_PRODUCT) {
float_minheap_array_t res = {
size_t(n), size_t(k), labels, distances};
knn_inner_product (x, xb.data(), d, n, ntotal, &res);
} else if (metric_type == METRIC_L2) {
float_maxheap_array_t res = {
size_t(n), size_t(k), labels, distances};
knn_L2sqr (x, xb.data(), d, n, ntotal, &res);
} else {
float_maxheap_array_t res = {
size_t(n), size_t(k), labels, distances};
knn_extra_metrics (x, xb.data(), d, n, ntotal,
metric_type, metric_arg,
&res);
}
}
void IndexFlat::range_search (idx_t n, const float *x, float radius,
RangeSearchResult *result) const
{
switch (metric_type) {
case METRIC_INNER_PRODUCT:
range_search_inner_product (x, xb.data(), d, n, ntotal,
radius, result);
break;
case METRIC_L2:
range_search_L2sqr (x, xb.data(), d, n, ntotal, radius, result);
break;
default:
FAISS_THROW_MSG("metric type not supported");
}
}
void IndexFlat::compute_distance_subset (
idx_t n,
const float *x,
idx_t k,
float *distances,
const idx_t *labels) const
{
switch (metric_type) {
case METRIC_INNER_PRODUCT:
fvec_inner_products_by_idx (
distances,
x, xb.data(), labels, d, n, k);
break;
case METRIC_L2:
fvec_L2sqr_by_idx (
distances,
x, xb.data(), labels, d, n, k);
break;
default:
FAISS_THROW_MSG("metric type not supported");
}
}
size_t IndexFlat::remove_ids (const IDSelector & sel)
{
idx_t j = 0;
for (idx_t i = 0; i < ntotal; i++) {
if (sel.is_member (i)) {
// should be removed
} else {
if (i > j) {
memmove (&xb[d * j], &xb[d * i], sizeof(xb[0]) * d);
}
j++;
}
}
size_t nremove = ntotal - j;
if (nremove > 0) {
ntotal = j;
xb.resize (ntotal * d);
}
return nremove;
}
namespace {
struct FlatL2Dis : DistanceComputer {
size_t d;
Index::idx_t nb;
const float *q;
const float *b;
size_t ndis;
float operator () (idx_t i) override {
ndis++;
return fvec_L2sqr(q, b + i * d, d);
}
float symmetric_dis(idx_t i, idx_t j) override {
return fvec_L2sqr(b + j * d, b + i * d, d);
}
explicit FlatL2Dis(const IndexFlat& storage, const float *q = nullptr)
: d(storage.d),
nb(storage.ntotal),
q(q),
b(storage.xb.data()),
ndis(0) {}
void set_query(const float *x) override {
q = x;
}
};
struct FlatIPDis : DistanceComputer {
size_t d;
Index::idx_t nb;
const float *q;
const float *b;
size_t ndis;
float operator () (idx_t i) override {
ndis++;
return fvec_inner_product (q, b + i * d, d);
}
float symmetric_dis(idx_t i, idx_t j) override {
return fvec_inner_product (b + j * d, b + i * d, d);
}
explicit FlatIPDis(const IndexFlat& storage, const float *q = nullptr)
: d(storage.d),
nb(storage.ntotal),
q(q),
b(storage.xb.data()),
ndis(0) {}
void set_query(const float *x) override {
q = x;
}
};
} // namespace
DistanceComputer * IndexFlat::get_distance_computer() const {
if (metric_type == METRIC_L2) {
return new FlatL2Dis(*this);
} else if (metric_type == METRIC_INNER_PRODUCT) {
return new FlatIPDis(*this);
} else {
return get_extra_distance_computer (d, metric_type, metric_arg,
ntotal, xb.data());
}
}
void IndexFlat::reconstruct (idx_t key, float * recons) const
{
memcpy (recons, &(xb[key * d]), sizeof(*recons) * d);
}
/* The standalone codec interface */
size_t IndexFlat::sa_code_size () const
{
return sizeof(float) * d;
}
void IndexFlat::sa_encode (idx_t n, const float *x, uint8_t *bytes) const
{
memcpy (bytes, x, sizeof(float) * d * n);
}
void IndexFlat::sa_decode (idx_t n, const uint8_t *bytes, float *x) const
{
memcpy (x, bytes, sizeof(float) * d * n);
}
/***************************************************
* IndexFlatL2BaseShift
***************************************************/
IndexFlatL2BaseShift::IndexFlatL2BaseShift (idx_t d, size_t nshift, const float *shift):
IndexFlatL2 (d), shift (nshift)
{
memcpy (this->shift.data(), shift, sizeof(float) * nshift);
}
void IndexFlatL2BaseShift::search (
idx_t n,
const float *x,
idx_t k,
float *distances,
idx_t *labels) const
{
FAISS_THROW_IF_NOT (shift.size() == ntotal);
float_maxheap_array_t res = {
size_t(n), size_t(k), labels, distances};
knn_L2sqr_base_shift (x, xb.data(), d, n, ntotal, &res, shift.data());
}
/***************************************************
* IndexRefineFlat
***************************************************/
IndexRefineFlat::IndexRefineFlat (Index *base_index):
Index (base_index->d, base_index->metric_type),
refine_index (base_index->d, base_index->metric_type),
base_index (base_index), own_fields (false),
k_factor (1)
{
is_trained = base_index->is_trained;
FAISS_THROW_IF_NOT_MSG (base_index->ntotal == 0,
"base_index should be empty in the beginning");
}
IndexRefineFlat::IndexRefineFlat () {
base_index = nullptr;
own_fields = false;
k_factor = 1;
}
void IndexRefineFlat::train (idx_t n, const float *x)
{
base_index->train (n, x);
is_trained = true;
}
void IndexRefineFlat::add (idx_t n, const float *x) {
FAISS_THROW_IF_NOT (is_trained);
base_index->add (n, x);
refine_index.add (n, x);
ntotal = refine_index.ntotal;
}
void IndexRefineFlat::reset ()
{
base_index->reset ();
refine_index.reset ();
ntotal = 0;
}
namespace {
typedef faiss::Index::idx_t idx_t;
template<class C>
static void reorder_2_heaps (
idx_t n,
idx_t k, idx_t *labels, float *distances,
idx_t k_base, const idx_t *base_labels, const float *base_distances)
{
#pragma omp parallel for
for (idx_t i = 0; i < n; i++) {
idx_t *idxo = labels + i * k;
float *diso = distances + i * k;
const idx_t *idxi = base_labels + i * k_base;
const float *disi = base_distances + i * k_base;
heap_heapify<C> (k, diso, idxo, disi, idxi, k);
if (k_base != k) { // add remaining elements
heap_addn<C> (k, diso, idxo, disi + k, idxi + k, k_base - k);
}
heap_reorder<C> (k, diso, idxo);
}
}
}
void IndexRefineFlat::search (
idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const
{
FAISS_THROW_IF_NOT (is_trained);
idx_t k_base = idx_t (k * k_factor);
idx_t * base_labels = labels;
float * base_distances = distances;
ScopeDeleter<idx_t> del1;
ScopeDeleter<float> del2;
if (k != k_base) {
base_labels = new idx_t [n * k_base];
del1.set (base_labels);
base_distances = new float [n * k_base];
del2.set (base_distances);
}
base_index->search (n, x, k_base, base_distances, base_labels);
for (int i = 0; i < n * k_base; i++)
assert (base_labels[i] >= -1 &&
base_labels[i] < ntotal);
// compute refined distances
refine_index.compute_distance_subset (
n, x, k_base, base_distances, base_labels);
// sort and store result
if (metric_type == METRIC_L2) {
typedef CMax <float, idx_t> C;
reorder_2_heaps<C> (
n, k, labels, distances,
k_base, base_labels, base_distances);
} else if (metric_type == METRIC_INNER_PRODUCT) {
typedef CMin <float, idx_t> C;
reorder_2_heaps<C> (
n, k, labels, distances,
k_base, base_labels, base_distances);
} else {
FAISS_THROW_MSG("Metric type not supported");
}
}
IndexRefineFlat::~IndexRefineFlat ()
{
if (own_fields) delete base_index;
}
/***************************************************
* IndexFlat1D
***************************************************/
IndexFlat1D::IndexFlat1D (bool continuous_update):
IndexFlatL2 (1),
continuous_update (continuous_update)
{
}
/// if not continuous_update, call this between the last add and
/// the first search
void IndexFlat1D::update_permutation ()
{
perm.resize (ntotal);
if (ntotal < 1000000) {
fvec_argsort (ntotal, xb.data(), (size_t*)perm.data());
} else {
fvec_argsort_parallel (ntotal, xb.data(), (size_t*)perm.data());
}
}
void IndexFlat1D::add (idx_t n, const float *x)
{
IndexFlatL2::add (n, x);
if (continuous_update)
update_permutation();
}
void IndexFlat1D::reset()
{
IndexFlatL2::reset();
perm.clear();
}
void IndexFlat1D::search (
idx_t n,
const float *x,
idx_t k,
float *distances,
idx_t *labels) const
{
FAISS_THROW_IF_NOT_MSG (perm.size() == ntotal,
"Call update_permutation before search");
#pragma omp parallel for
for (idx_t i = 0; i < n; i++) {
float q = x[i]; // query
float *D = distances + i * k;
idx_t *I = labels + i * k;
// binary search
idx_t i0 = 0, i1 = ntotal;
idx_t wp = 0;
if (xb[perm[i0]] > q) {
i1 = 0;
goto finish_right;
}
if (xb[perm[i1 - 1]] <= q) {
i0 = i1 - 1;
goto finish_left;
}
while (i0 + 1 < i1) {
idx_t imed = (i0 + i1) / 2;
if (xb[perm[imed]] <= q) i0 = imed;
else i1 = imed;
}
// query is between xb[perm[i0]] and xb[perm[i1]]
// expand to nearest neighs
while (wp < k) {
float xleft = xb[perm[i0]];
float xright = xb[perm[i1]];
if (q - xleft < xright - q) {
D[wp] = q - xleft;
I[wp] = perm[i0];
i0--; wp++;
if (i0 < 0) { goto finish_right; }
} else {
D[wp] = xright - q;
I[wp] = perm[i1];
i1++; wp++;
if (i1 >= ntotal) { goto finish_left; }
}
}
goto done;
finish_right:
// grow to the right from i1
while (wp < k) {
if (i1 < ntotal) {
D[wp] = xb[perm[i1]] - q;
I[wp] = perm[i1];
i1++;
} else {
D[wp] = std::numeric_limits<float>::infinity();
I[wp] = -1;
}
wp++;
}
goto done;
finish_left:
// grow to the left from i0
while (wp < k) {
if (i0 >= 0) {
D[wp] = q - xb[perm[i0]];
I[wp] = perm[i0];
i0--;
} else {
D[wp] = std::numeric_limits<float>::infinity();
I[wp] = -1;
}
wp++;
}
done: ;
}
}
} // namespace faiss

View File

@ -0,0 +1,175 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef INDEX_FLAT_H
#define INDEX_FLAT_H
#include <vector>
#include <faiss/Index.h>
namespace faiss {
/** Index that stores the full vectors and performs exhaustive search */
struct IndexFlat: Index {
/// database vectors, size ntotal * d
std::vector<float> xb;
explicit IndexFlat (idx_t d, MetricType metric = METRIC_L2);
void add(idx_t n, const float* x) override;
void reset() override;
void search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels) const override;
void range_search(
idx_t n,
const float* x,
float radius,
RangeSearchResult* result) const override;
void reconstruct(idx_t key, float* recons) const override;
/** compute distance with a subset of vectors
*
* @param x query vectors, size n * d
* @param labels indices of the vectors that should be compared
* for each query vector, size n * k
* @param distances
* corresponding output distances, size n * k
*/
void compute_distance_subset (
idx_t n,
const float *x,
idx_t k,
float *distances,
const idx_t *labels) const;
/** remove some ids. NB that Because of the structure of the
* indexing structure, the semantics of this operation are
* different from the usual ones: the new ids are shifted */
size_t remove_ids(const IDSelector& sel) override;
IndexFlat () {}
DistanceComputer * get_distance_computer() const override;
/* The stanadlone codec interface (just memcopies in this case) */
size_t sa_code_size () const override;
void sa_encode (idx_t n, const float *x,
uint8_t *bytes) const override;
void sa_decode (idx_t n, const uint8_t *bytes,
float *x) const override;
};
struct IndexFlatIP:IndexFlat {
explicit IndexFlatIP (idx_t d): IndexFlat (d, METRIC_INNER_PRODUCT) {}
IndexFlatIP () {}
};
struct IndexFlatL2:IndexFlat {
explicit IndexFlatL2 (idx_t d): IndexFlat (d, METRIC_L2) {}
IndexFlatL2 () {}
};
// same as an IndexFlatL2 but a value is subtracted from each distance
struct IndexFlatL2BaseShift: IndexFlatL2 {
std::vector<float> shift;
IndexFlatL2BaseShift (idx_t d, size_t nshift, const float *shift);
void search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels) const override;
};
/** Index that queries in a base_index (a fast one) and refines the
* results with an exact search, hopefully improving the results.
*/
struct IndexRefineFlat: Index {
/// storage for full vectors
IndexFlat refine_index;
/// faster index to pre-select the vectors that should be filtered
Index *base_index;
bool own_fields; ///< should the base index be deallocated?
/// factor between k requested in search and the k requested from
/// the base_index (should be >= 1)
float k_factor;
explicit IndexRefineFlat (Index *base_index);
IndexRefineFlat ();
void train(idx_t n, const float* x) override;
void add(idx_t n, const float* x) override;
void reset() override;
void search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels) const override;
~IndexRefineFlat() override;
};
/// optimized version for 1D "vectors"
struct IndexFlat1D:IndexFlatL2 {
bool continuous_update; ///< is the permutation updated continuously?
std::vector<idx_t> perm; ///< sorted database indices
explicit IndexFlat1D (bool continuous_update=true);
/// if not continuous_update, call this between the last add and
/// the first search
void update_permutation ();
void add(idx_t n, const float* x) override;
void reset() override;
/// Warn: the distances returned are L1 not L2
void search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels) const override;
};
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,170 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#pragma once
#include <vector>
#include <faiss/impl/HNSW.h>
#include <faiss/IndexFlat.h>
#include <faiss/IndexPQ.h>
#include <faiss/IndexScalarQuantizer.h>
#include <faiss/utils/utils.h>
namespace faiss {
struct IndexHNSW;
struct ReconstructFromNeighbors {
typedef Index::idx_t idx_t;
typedef HNSW::storage_idx_t storage_idx_t;
const IndexHNSW & index;
size_t M; // number of neighbors
size_t k; // number of codebook entries
size_t nsq; // number of subvectors
size_t code_size;
int k_reorder; // nb to reorder. -1 = all
std::vector<float> codebook; // size nsq * k * (M + 1)
std::vector<uint8_t> codes; // size ntotal * code_size
size_t ntotal;
size_t d, dsub; // derived values
explicit ReconstructFromNeighbors(const IndexHNSW& index,
size_t k=256, size_t nsq=1);
/// codes must be added in the correct order and the IndexHNSW
/// must be populated and sorted
void add_codes(size_t n, const float *x);
size_t compute_distances(size_t n, const idx_t *shortlist,
const float *query, float *distances) const;
/// called by add_codes
void estimate_code(const float *x, storage_idx_t i, uint8_t *code) const;
/// called by compute_distances
void reconstruct(storage_idx_t i, float *x, float *tmp) const;
void reconstruct_n(storage_idx_t n0, storage_idx_t ni, float *x) const;
/// get the M+1 -by-d table for neighbor coordinates for vector i
void get_neighbor_table(storage_idx_t i, float *out) const;
};
/** The HNSW index is a normal random-access index with a HNSW
* link structure built on top */
struct IndexHNSW : Index {
typedef HNSW::storage_idx_t storage_idx_t;
// the link strcuture
HNSW hnsw;
// the sequential storage
bool own_fields;
Index *storage;
ReconstructFromNeighbors *reconstruct_from_neighbors;
explicit IndexHNSW (int d = 0, int M = 32);
explicit IndexHNSW (Index *storage, int M = 32);
~IndexHNSW() override;
void add(idx_t n, const float *x) override;
/// Trains the storage if needed
void train(idx_t n, const float* x) override;
/// entry point for search
void search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const override;
void reconstruct(idx_t key, float* recons) const override;
void reset () override;
void shrink_level_0_neighbors(int size);
/** Perform search only on level 0, given the starting points for
* each vertex.
*
* @param search_type 1:perform one search per nprobe, 2: enqueue
* all entry points
*/
void search_level_0(idx_t n, const float *x, idx_t k,
const storage_idx_t *nearest, const float *nearest_d,
float *distances, idx_t *labels, int nprobe = 1,
int search_type = 1) const;
/// alternative graph building
void init_level_0_from_knngraph(
int k, const float *D, const idx_t *I);
/// alternative graph building
void init_level_0_from_entry_points(
int npt, const storage_idx_t *points,
const storage_idx_t *nearests);
// reorder links from nearest to farthest
void reorder_links();
void link_singletons();
};
/** Flat index topped with with a HNSW structure to access elements
* more efficiently.
*/
struct IndexHNSWFlat : IndexHNSW {
IndexHNSWFlat();
IndexHNSWFlat(int d, int M);
};
/** PQ index topped with with a HNSW structure to access elements
* more efficiently.
*/
struct IndexHNSWPQ : IndexHNSW {
IndexHNSWPQ();
IndexHNSWPQ(int d, int pq_m, int M);
void train(idx_t n, const float* x) override;
};
/** SQ index topped with with a HNSW structure to access elements
* more efficiently.
*/
struct IndexHNSWSQ : IndexHNSW {
IndexHNSWSQ();
IndexHNSWSQ(int d, ScalarQuantizer::QuantizerType qtype, int M);
};
/** 2-level code structure with fast random access
*/
struct IndexHNSW2Level : IndexHNSW {
IndexHNSW2Level();
IndexHNSW2Level(Index *quantizer, size_t nlist, int m_pq, int M);
void flip_to_ivf();
/// entry point for search
void search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const override;
};
} // namespace faiss

View File

@ -0,0 +1,966 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexIVF.h>
#include <omp.h>
#include <cstdio>
#include <memory>
#include <iostream>
#include <faiss/utils/utils.h>
#include <faiss/utils/hamming.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/IndexFlat.h>
#include <faiss/impl/AuxIndexStructures.h>
namespace faiss {
using ScopedIds = InvertedLists::ScopedIds;
using ScopedCodes = InvertedLists::ScopedCodes;
/*****************************************
* Level1Quantizer implementation
******************************************/
Level1Quantizer::Level1Quantizer (Index * quantizer, size_t nlist):
quantizer (quantizer),
nlist (nlist),
quantizer_trains_alone (0),
own_fields (false),
clustering_index (nullptr)
{
// here we set a low # iterations because this is typically used
// for large clusterings (nb this is not used for the MultiIndex,
// for which quantizer_trains_alone = true)
cp.niter = 10;
}
Level1Quantizer::Level1Quantizer ():
quantizer (nullptr),
nlist (0),
quantizer_trains_alone (0), own_fields (false),
clustering_index (nullptr)
{}
Level1Quantizer::~Level1Quantizer ()
{
if (own_fields) {
if(quantizer == quantizer_backup) {
if(quantizer != nullptr) {
delete quantizer;
}
} else {
if(quantizer != nullptr) {
delete quantizer;
}
if(quantizer_backup != nullptr) {
delete quantizer_backup;
}
}
quantizer = nullptr;
quantizer_backup = nullptr;
}
}
void Level1Quantizer::train_q1 (size_t n, const float *x, bool verbose, MetricType metric_type)
{
size_t d = quantizer->d;
if (quantizer->is_trained && (quantizer->ntotal == nlist)) {
if (verbose)
printf ("IVF quantizer does not need training.\n");
} else if (quantizer_trains_alone == 1) {
if (verbose)
printf ("IVF quantizer trains alone...\n");
quantizer->train (n, x);
quantizer->verbose = verbose;
FAISS_THROW_IF_NOT_MSG (quantizer->ntotal == nlist,
"nlist not consistent with quantizer size");
} else if (quantizer_trains_alone == 0) {
if (verbose)
printf ("Training level-1 quantizer on %ld vectors in %ldD\n",
n, d);
Clustering clus (d, nlist, cp);
quantizer->reset();
if (clustering_index) {
clus.train (n, x, *clustering_index);
quantizer->add (nlist, clus.centroids.data());
} else {
clus.train (n, x, *quantizer);
}
quantizer->is_trained = true;
} else if (quantizer_trains_alone == 2) {
if (verbose)
printf (
"Training L2 quantizer on %ld vectors in %ldD%s\n",
n, d,
clustering_index ? "(user provided index)" : "");
FAISS_THROW_IF_NOT (metric_type == METRIC_L2);
Clustering clus (d, nlist, cp);
if (!clustering_index) {
IndexFlatL2 assigner (d);
clus.train(n, x, assigner);
} else {
clus.train(n, x, *clustering_index);
}
if (verbose)
printf ("Adding centroids to quantizer\n");
quantizer->add (nlist, clus.centroids.data());
}
}
size_t Level1Quantizer::coarse_code_size () const
{
size_t nl = nlist - 1;
size_t nbyte = 0;
while (nl > 0) {
nbyte ++;
nl >>= 8;
}
return nbyte;
}
void Level1Quantizer::encode_listno (Index::idx_t list_no, uint8_t *code) const
{
// little endian
size_t nl = nlist - 1;
while (nl > 0) {
*code++ = list_no & 0xff;
list_no >>= 8;
nl >>= 8;
}
}
Index::idx_t Level1Quantizer::decode_listno (const uint8_t *code) const
{
size_t nl = nlist - 1;
int64_t list_no = 0;
int nbit = 0;
while (nl > 0) {
list_no |= int64_t(*code++) << nbit;
nbit += 8;
nl >>= 8;
}
FAISS_THROW_IF_NOT (list_no >= 0 && list_no < nlist);
return list_no;
}
/*****************************************
* IndexIVF implementation
******************************************/
IndexIVF::IndexIVF (Index * quantizer, size_t d,
size_t nlist, size_t code_size,
MetricType metric):
Index (d, metric),
Level1Quantizer (quantizer, nlist),
invlists (new ArrayInvertedLists (nlist, code_size)),
own_invlists (true),
code_size (code_size),
nprobe (1),
max_codes (0),
parallel_mode (0),
maintain_direct_map (false)
{
FAISS_THROW_IF_NOT (d == quantizer->d);
is_trained = quantizer->is_trained && (quantizer->ntotal == nlist);
// Spherical by default if the metric is inner_product
if (metric_type == METRIC_INNER_PRODUCT) {
cp.spherical = true;
}
}
IndexIVF::IndexIVF ():
invlists (nullptr), own_invlists (false),
code_size (0),
nprobe (1), max_codes (0), parallel_mode (0),
maintain_direct_map (false)
{}
void IndexIVF::add (idx_t n, const float * x)
{
add_with_ids (n, x, nullptr);
}
void IndexIVF::add_with_ids (idx_t n, const float * x, const idx_t *xids)
{
// do some blocking to avoid excessive allocs
idx_t bs = 65536;
if (n > bs) {
for (idx_t i0 = 0; i0 < n; i0 += bs) {
idx_t i1 = std::min (n, i0 + bs);
if (verbose) {
printf(" IndexIVF::add_with_ids %ld:%ld\n", i0, i1);
}
add_with_ids (i1 - i0, x + i0 * d,
xids ? xids + i0 : nullptr);
}
return;
}
FAISS_THROW_IF_NOT (is_trained);
std::unique_ptr<idx_t []> idx(new idx_t[n]);
quantizer->assign (n, x, idx.get());
size_t nadd = 0, nminus1 = 0;
for (size_t i = 0; i < n; i++) {
if (idx[i] < 0) nminus1++;
}
std::unique_ptr<uint8_t []> flat_codes(new uint8_t [n * code_size]);
encode_vectors (n, x, idx.get(), flat_codes.get());
#pragma omp parallel reduction(+: nadd)
{
int nt = omp_get_num_threads();
int rank = omp_get_thread_num();
// each thread takes care of a subset of lists
for (size_t i = 0; i < n; i++) {
idx_t list_no = idx [i];
if (list_no >= 0 && list_no % nt == rank) {
idx_t id = xids ? xids[i] : ntotal + i;
invlists->add_entry (list_no, id,
flat_codes.get() + i * code_size);
nadd++;
}
}
}
if (verbose) {
printf(" added %ld / %ld vectors (%ld -1s)\n", nadd, n, nminus1);
}
ntotal += n;
}
void IndexIVF::to_readonly() {
if (is_readonly()) return;
auto readonly_lists = this->invlists->to_readonly();
if (!readonly_lists) return;
this->replace_invlists(readonly_lists, true);
}
bool IndexIVF::is_readonly() const {
return this->invlists->is_readonly();
}
void IndexIVF::backup_quantizer() {
this->quantizer_backup = quantizer;
}
void IndexIVF::restore_quantizer() {
if(this->quantizer_backup != nullptr) {
quantizer = this->quantizer_backup;
}
}
void IndexIVF::make_direct_map (bool new_maintain_direct_map)
{
// nothing to do
if (new_maintain_direct_map == maintain_direct_map)
return;
if (new_maintain_direct_map) {
direct_map.resize (ntotal, -1);
for (size_t key = 0; key < nlist; key++) {
size_t list_size = invlists->list_size (key);
ScopedIds idlist (invlists, key);
for (long ofs = 0; ofs < list_size; ofs++) {
FAISS_THROW_IF_NOT_MSG (
0 <= idlist [ofs] && idlist[ofs] < ntotal,
"direct map supported only for seuquential ids");
direct_map [idlist [ofs]] = key << 32 | ofs;
}
}
} else {
direct_map.clear ();
}
maintain_direct_map = new_maintain_direct_map;
}
void IndexIVF::search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const
{
std::unique_ptr<idx_t[]> idx(new idx_t[n * nprobe]);
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
double t0 = getmillisecs();
quantizer->search (n, x, nprobe, coarse_dis.get(), idx.get());
indexIVF_stats.quantization_time += getmillisecs() - t0;
t0 = getmillisecs();
invlists->prefetch_lists (idx.get(), n * nprobe);
search_preassigned (n, x, k, idx.get(), coarse_dis.get(),
distances, labels, false);
indexIVF_stats.search_time += getmillisecs() - t0;
}
void IndexIVF::search_preassigned (idx_t n, const float *x, idx_t k,
const idx_t *keys,
const float *coarse_dis ,
float *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params) const
{
long nprobe = params ? params->nprobe : this->nprobe;
long max_codes = params ? params->max_codes : this->max_codes;
size_t nlistv = 0, ndis = 0, nheap = 0;
using HeapForIP = CMin<float, idx_t>;
using HeapForL2 = CMax<float, idx_t>;
bool interrupt = false;
// don't start parallel section if single query
bool do_parallel =
parallel_mode == 0 ? n > 1 :
parallel_mode == 1 ? nprobe > 1 :
nprobe * n > 1;
#pragma omp parallel if(do_parallel) reduction(+: nlistv, ndis, nheap)
{
InvertedListScanner *scanner = get_InvertedListScanner(store_pairs);
ScopeDeleter1<InvertedListScanner> del(scanner);
/*****************************************************
* Depending on parallel_mode, there are two possible ways
* to organize the search. Here we define local functions
* that are in common between the two
******************************************************/
// intialize + reorder a result heap
auto init_result = [&](float *simi, idx_t *idxi) {
if (metric_type == METRIC_INNER_PRODUCT) {
heap_heapify<HeapForIP> (k, simi, idxi);
} else {
heap_heapify<HeapForL2> (k, simi, idxi);
}
};
auto reorder_result = [&] (float *simi, idx_t *idxi) {
if (metric_type == METRIC_INNER_PRODUCT) {
heap_reorder<HeapForIP> (k, simi, idxi);
} else {
heap_reorder<HeapForL2> (k, simi, idxi);
}
};
// single list scan using the current scanner (with query
// set porperly) and storing results in simi and idxi
auto scan_one_list = [&] (idx_t key, float coarse_dis_i,
float *simi, idx_t *idxi) {
if (key < 0) {
// not enough centroids for multiprobe
return (size_t)0;
}
FAISS_THROW_IF_NOT_FMT (key < (idx_t) nlist,
"Invalid key=%ld nlist=%ld\n",
key, nlist);
size_t list_size = invlists->list_size(key);
// don't waste time on empty lists
if (list_size == 0) {
return (size_t)0;
}
scanner->set_list (key, coarse_dis_i);
nlistv++;
InvertedLists::ScopedCodes scodes (invlists, key);
std::unique_ptr<InvertedLists::ScopedIds> sids;
const Index::idx_t * ids = nullptr;
if (!store_pairs) {
sids.reset (new InvertedLists::ScopedIds (invlists, key));
ids = sids->get();
}
nheap += scanner->scan_codes (list_size, scodes.get(),
ids, simi, idxi, k);
return list_size;
};
/****************************************************
* Actual loops, depending on parallel_mode
****************************************************/
if (parallel_mode == 0) {
#pragma omp for
for (size_t i = 0; i < n; i++) {
if (interrupt) {
continue;
}
// loop over queries
scanner->set_query (x + i * d);
float * simi = distances + i * k;
idx_t * idxi = labels + i * k;
init_result (simi, idxi);
long nscan = 0;
// loop over probes
for (size_t ik = 0; ik < nprobe; ik++) {
nscan += scan_one_list (
keys [i * nprobe + ik],
coarse_dis[i * nprobe + ik],
simi, idxi
);
if (max_codes && nscan >= max_codes) {
break;
}
}
ndis += nscan;
reorder_result (simi, idxi);
if (InterruptCallback::is_interrupted ()) {
interrupt = true;
}
} // parallel for
} else if (parallel_mode == 1) {
std::vector <idx_t> local_idx (k);
std::vector <float> local_dis (k);
for (size_t i = 0; i < n; i++) {
scanner->set_query (x + i * d);
init_result (local_dis.data(), local_idx.data());
#pragma omp for schedule(dynamic)
for (size_t ik = 0; ik < nprobe; ik++) {
ndis += scan_one_list
(keys [i * nprobe + ik],
coarse_dis[i * nprobe + ik],
local_dis.data(), local_idx.data());
// can't do the test on max_codes
}
// merge thread-local results
float * simi = distances + i * k;
idx_t * idxi = labels + i * k;
#pragma omp single
init_result (simi, idxi);
#pragma omp barrier
#pragma omp critical
{
if (metric_type == METRIC_INNER_PRODUCT) {
heap_addn<HeapForIP>
(k, simi, idxi,
local_dis.data(), local_idx.data(), k);
} else {
heap_addn<HeapForL2>
(k, simi, idxi,
local_dis.data(), local_idx.data(), k);
}
}
#pragma omp barrier
#pragma omp single
reorder_result (simi, idxi);
}
} else {
FAISS_THROW_FMT ("parallel_mode %d not supported\n",
parallel_mode);
}
} // parallel section
if (interrupt) {
FAISS_THROW_MSG ("computation interrupted");
}
indexIVF_stats.nq += n;
indexIVF_stats.nlist += nlistv;
indexIVF_stats.ndis += ndis;
indexIVF_stats.nheap_updates += nheap;
}
void IndexIVF::range_search (idx_t nx, const float *x, float radius,
RangeSearchResult *result) const
{
std::unique_ptr<idx_t[]> keys (new idx_t[nx * nprobe]);
std::unique_ptr<float []> coarse_dis (new float[nx * nprobe]);
double t0 = getmillisecs();
quantizer->search (nx, x, nprobe, coarse_dis.get (), keys.get ());
indexIVF_stats.quantization_time += getmillisecs() - t0;
t0 = getmillisecs();
invlists->prefetch_lists (keys.get(), nx * nprobe);
range_search_preassigned (nx, x, radius, keys.get (), coarse_dis.get (),
result);
indexIVF_stats.search_time += getmillisecs() - t0;
}
void IndexIVF::range_search_preassigned (
idx_t nx, const float *x, float radius,
const idx_t *keys, const float *coarse_dis,
RangeSearchResult *result) const
{
size_t nlistv = 0, ndis = 0;
bool store_pairs = false;
std::vector<RangeSearchPartialResult *> all_pres (omp_get_max_threads());
#pragma omp parallel reduction(+: nlistv, ndis)
{
RangeSearchPartialResult pres(result);
std::unique_ptr<InvertedListScanner> scanner
(get_InvertedListScanner(store_pairs));
FAISS_THROW_IF_NOT (scanner.get ());
all_pres[omp_get_thread_num()] = &pres;
// prepare the list scanning function
auto scan_list_func = [&](size_t i, size_t ik, RangeQueryResult &qres) {
idx_t key = keys[i * nprobe + ik]; /* select the list */
if (key < 0) return;
FAISS_THROW_IF_NOT_FMT (
key < (idx_t) nlist,
"Invalid key=%ld at ik=%ld nlist=%ld\n",
key, ik, nlist);
const size_t list_size = invlists->list_size(key);
if (list_size == 0) return;
InvertedLists::ScopedCodes scodes (invlists, key);
InvertedLists::ScopedIds ids (invlists, key);
scanner->set_list (key, coarse_dis[i * nprobe + ik]);
nlistv++;
ndis += list_size;
scanner->scan_codes_range (list_size, scodes.get(),
ids.get(), radius, qres);
};
if (parallel_mode == 0) {
#pragma omp for
for (size_t i = 0; i < nx; i++) {
scanner->set_query (x + i * d);
RangeQueryResult & qres = pres.new_result (i);
for (size_t ik = 0; ik < nprobe; ik++) {
scan_list_func (i, ik, qres);
}
}
} else if (parallel_mode == 1) {
for (size_t i = 0; i < nx; i++) {
scanner->set_query (x + i * d);
RangeQueryResult & qres = pres.new_result (i);
#pragma omp for schedule(dynamic)
for (size_t ik = 0; ik < nprobe; ik++) {
scan_list_func (i, ik, qres);
}
}
} else if (parallel_mode == 2) {
std::vector<RangeQueryResult *> all_qres (nx);
RangeQueryResult *qres = nullptr;
#pragma omp for schedule(dynamic)
for (size_t iik = 0; iik < nx * nprobe; iik++) {
size_t i = iik / nprobe;
size_t ik = iik % nprobe;
if (qres == nullptr || qres->qno != i) {
FAISS_ASSERT (!qres || i > qres->qno);
qres = &pres.new_result (i);
scanner->set_query (x + i * d);
}
scan_list_func (i, ik, *qres);
}
} else {
FAISS_THROW_FMT ("parallel_mode %d not supported\n", parallel_mode);
}
if (parallel_mode == 0) {
pres.finalize ();
} else {
#pragma omp barrier
#pragma omp single
RangeSearchPartialResult::merge (all_pres, false);
#pragma omp barrier
}
}
indexIVF_stats.nq += nx;
indexIVF_stats.nlist += nlistv;
indexIVF_stats.ndis += ndis;
}
InvertedListScanner *IndexIVF::get_InvertedListScanner (
bool /*store_pairs*/) const
{
return nullptr;
}
void IndexIVF::reconstruct (idx_t key, float* recons) const
{
FAISS_THROW_IF_NOT_MSG (direct_map.size() == ntotal,
"direct map is not initialized");
FAISS_THROW_IF_NOT_MSG (key >= 0 && key < direct_map.size(),
"invalid key");
idx_t list_no = direct_map[key] >> 32;
idx_t offset = direct_map[key] & 0xffffffff;
reconstruct_from_offset (list_no, offset, recons);
}
void IndexIVF::reconstruct_n (idx_t i0, idx_t ni, float* recons) const
{
FAISS_THROW_IF_NOT (ni == 0 || (i0 >= 0 && i0 + ni <= ntotal));
for (idx_t list_no = 0; list_no < nlist; list_no++) {
size_t list_size = invlists->list_size (list_no);
ScopedIds idlist (invlists, list_no);
for (idx_t offset = 0; offset < list_size; offset++) {
idx_t id = idlist[offset];
if (!(id >= i0 && id < i0 + ni)) {
continue;
}
float* reconstructed = recons + (id - i0) * d;
reconstruct_from_offset (list_no, offset, reconstructed);
}
}
}
/* standalone codec interface */
size_t IndexIVF::sa_code_size () const
{
size_t coarse_size = coarse_code_size();
return code_size + coarse_size;
}
void IndexIVF::sa_encode (idx_t n, const float *x,
uint8_t *bytes) const
{
FAISS_THROW_IF_NOT (is_trained);
std::unique_ptr<int64_t []> idx (new int64_t [n]);
quantizer->assign (n, x, idx.get());
encode_vectors (n, x, idx.get(), bytes, true);
}
void IndexIVF::search_and_reconstruct (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels,
float *recons) const
{
idx_t * idx = new idx_t [n * nprobe];
ScopeDeleter<idx_t> del (idx);
float * coarse_dis = new float [n * nprobe];
ScopeDeleter<float> del2 (coarse_dis);
quantizer->search (n, x, nprobe, coarse_dis, idx);
invlists->prefetch_lists (idx, n * nprobe);
// search_preassigned() with `store_pairs` enabled to obtain the list_no
// and offset into `codes` for reconstruction
search_preassigned (n, x, k, idx, coarse_dis,
distances, labels, true /* store_pairs */);
for (idx_t i = 0; i < n; ++i) {
for (idx_t j = 0; j < k; ++j) {
idx_t ij = i * k + j;
idx_t key = labels[ij];
float* reconstructed = recons + ij * d;
if (key < 0) {
// Fill with NaNs
memset(reconstructed, -1, sizeof(*reconstructed) * d);
} else {
int list_no = key >> 32;
int offset = key & 0xffffffff;
// Update label to the actual id
labels[ij] = invlists->get_single_id (list_no, offset);
reconstruct_from_offset (list_no, offset, reconstructed);
}
}
}
}
void IndexIVF::reconstruct_from_offset(
int64_t /*list_no*/,
int64_t /*offset*/,
float* /*recons*/) const {
FAISS_THROW_MSG ("reconstruct_from_offset not implemented");
}
void IndexIVF::reset ()
{
direct_map.clear ();
invlists->reset ();
ntotal = 0;
}
size_t IndexIVF::remove_ids (const IDSelector & sel)
{
FAISS_THROW_IF_NOT_MSG (!maintain_direct_map,
"direct map remove not implemented");
std::vector<idx_t> toremove(nlist);
#pragma omp parallel for
for (idx_t i = 0; i < nlist; i++) {
idx_t l0 = invlists->list_size (i), l = l0, j = 0;
ScopedIds idsi (invlists, i);
while (j < l) {
if (sel.is_member (idsi[j])) {
l--;
invlists->update_entry (
i, j,
invlists->get_single_id (i, l),
ScopedCodes (invlists, i, l).get());
} else {
j++;
}
}
toremove[i] = l0 - l;
}
// this will not run well in parallel on ondisk because of possible shrinks
size_t nremove = 0;
for (idx_t i = 0; i < nlist; i++) {
if (toremove[i] > 0) {
nremove += toremove[i];
invlists->resize(
i, invlists->list_size(i) - toremove[i]);
}
}
ntotal -= nremove;
return nremove;
}
void IndexIVF::train (idx_t n, const float *x)
{
if (verbose)
printf ("Training level-1 quantizer\n");
train_q1 (n, x, verbose, metric_type);
if (verbose)
printf ("Training IVF residual\n");
train_residual (n, x);
is_trained = true;
}
void IndexIVF::train_residual(idx_t /*n*/, const float* /*x*/) {
if (verbose)
printf("IndexIVF: no residual training\n");
// does nothing by default
}
void IndexIVF::check_compatible_for_merge (const IndexIVF &other) const
{
// minimal sanity checks
FAISS_THROW_IF_NOT (other.d == d);
FAISS_THROW_IF_NOT (other.nlist == nlist);
FAISS_THROW_IF_NOT (other.code_size == code_size);
FAISS_THROW_IF_NOT_MSG (typeid (*this) == typeid (other),
"can only merge indexes of the same type");
}
void IndexIVF::merge_from (IndexIVF &other, idx_t add_id)
{
check_compatible_for_merge (other);
FAISS_THROW_IF_NOT_MSG ((!maintain_direct_map &&
!other.maintain_direct_map),
"direct map copy not implemented");
invlists->merge_from (other.invlists, add_id);
ntotal += other.ntotal;
other.ntotal = 0;
}
void IndexIVF::replace_invlists (InvertedLists *il, bool own)
{
if (own_invlists) {
delete invlists;
}
// FAISS_THROW_IF_NOT (ntotal == 0);
if (il) {
FAISS_THROW_IF_NOT (il->nlist == nlist &&
il->code_size == code_size);
}
invlists = il;
own_invlists = own;
}
void IndexIVF::copy_subset_to (IndexIVF & other, int subset_type,
idx_t a1, idx_t a2) const
{
FAISS_THROW_IF_NOT (nlist == other.nlist);
FAISS_THROW_IF_NOT (code_size == other.code_size);
FAISS_THROW_IF_NOT (!other.maintain_direct_map);
FAISS_THROW_IF_NOT_FMT (
subset_type == 0 || subset_type == 1 || subset_type == 2,
"subset type %d not implemented", subset_type);
size_t accu_n = 0;
size_t accu_a1 = 0;
size_t accu_a2 = 0;
InvertedLists *oivf = other.invlists;
for (idx_t list_no = 0; list_no < nlist; list_no++) {
size_t n = invlists->list_size (list_no);
ScopedIds ids_in (invlists, list_no);
if (subset_type == 0) {
for (idx_t i = 0; i < n; i++) {
idx_t id = ids_in[i];
if (a1 <= id && id < a2) {
oivf->add_entry (list_no,
invlists->get_single_id (list_no, i),
ScopedCodes (invlists, list_no, i).get());
other.ntotal++;
}
}
} else if (subset_type == 1) {
for (idx_t i = 0; i < n; i++) {
idx_t id = ids_in[i];
if (id % a1 == a2) {
oivf->add_entry (list_no,
invlists->get_single_id (list_no, i),
ScopedCodes (invlists, list_no, i).get());
other.ntotal++;
}
}
} else if (subset_type == 2) {
// see what is allocated to a1 and to a2
size_t next_accu_n = accu_n + n;
size_t next_accu_a1 = next_accu_n * a1 / ntotal;
size_t i1 = next_accu_a1 - accu_a1;
size_t next_accu_a2 = next_accu_n * a2 / ntotal;
size_t i2 = next_accu_a2 - accu_a2;
for (idx_t i = i1; i < i2; i++) {
oivf->add_entry (list_no,
invlists->get_single_id (list_no, i),
ScopedCodes (invlists, list_no, i).get());
}
other.ntotal += i2 - i1;
accu_a1 = next_accu_a1;
accu_a2 = next_accu_a2;
}
accu_n += n;
}
FAISS_ASSERT(accu_n == ntotal);
}
void
IndexIVF::dump() {
for (auto i = 0; i < invlists->nlist; ++ i) {
auto numVecs = invlists->list_size(i);
auto ids = invlists->get_ids(i);
auto codes = invlists->get_codes(i);
int code_size = invlists->code_size;
std::cout << "Bucket ID: " << i << ", with code size: " << code_size << ", vectors number: " << numVecs << std::endl;
if(code_size == 8) {
// int8 types
for (auto j=0; j < numVecs; ++j) {
std::cout << *(ids+j) << ": " << std::endl;
for(int k = 0; k < this->d; ++ k) {
printf("%u ", (uint8_t)(codes[j * d + k]));
}
std::cout << std::endl;
}
}
std::cout << "Bucket End." << std::endl;
}
}
IndexIVF::~IndexIVF()
{
if (own_invlists) {
delete invlists;
}
}
void IndexIVFStats::reset()
{
memset ((void*)this, 0, sizeof (*this));
}
IndexIVFStats indexIVF_stats;
void InvertedListScanner::scan_codes_range (size_t ,
const uint8_t *,
const idx_t *,
float ,
RangeQueryResult &) const
{
FAISS_THROW_MSG ("scan_codes_range not implemented");
}
} // namespace faiss

View File

@ -0,0 +1,363 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_IVF_H
#define FAISS_INDEX_IVF_H
#include <vector>
#include <stdint.h>
#include <faiss/Index.h>
#include <faiss/InvertedLists.h>
#include <faiss/Clustering.h>
#include <faiss/utils/Heap.h>
namespace faiss {
/** Encapsulates a quantizer object for the IndexIVF
*
* The class isolates the fields that are independent of the storage
* of the lists (especially training)
*/
struct Level1Quantizer {
Index * quantizer = nullptr; ///< quantizer that maps vectors to inverted lists
Index * quantizer_backup = nullptr; ///< quantizer for backup
size_t nlist; ///< number of possible key values
/**
* = 0: use the quantizer as index in a kmeans training
* = 1: just pass on the training set to the train() of the quantizer
* = 2: kmeans training on a flat index + add the centroids to the quantizer
*/
char quantizer_trains_alone;
bool own_fields; ///< whether object owns the quantizer
ClusteringParameters cp; ///< to override default clustering params
Index *clustering_index; ///< to override index used during clustering
/// Trains the quantizer and calls train_residual to train sub-quantizers
void train_q1 (size_t n, const float *x, bool verbose,
MetricType metric_type);
/// compute the number of bytes required to store list ids
size_t coarse_code_size () const;
void encode_listno (Index::idx_t list_no, uint8_t *code) const;
Index::idx_t decode_listno (const uint8_t *code) const;
Level1Quantizer (Index * quantizer, size_t nlist);
Level1Quantizer ();
~Level1Quantizer ();
};
struct IVFSearchParameters {
size_t nprobe; ///< number of probes at query time
size_t max_codes; ///< max nb of codes to visit to do a query
virtual ~IVFSearchParameters () {}
};
struct InvertedListScanner;
/** Index based on a inverted file (IVF)
*
* In the inverted file, the quantizer (an Index instance) provides a
* quantization index for each vector to be added. The quantization
* index maps to a list (aka inverted list or posting list), where the
* id of the vector is stored.
*
* The inverted list object is required only after trainng. If none is
* set externally, an ArrayInvertedLists is used automatically.
*
* At search time, the vector to be searched is also quantized, and
* only the list corresponding to the quantization index is
* searched. This speeds up the search by making it
* non-exhaustive. This can be relaxed using multi-probe search: a few
* (nprobe) quantization indices are selected and several inverted
* lists are visited.
*
* Sub-classes implement a post-filtering of the index that refines
* the distance estimation from the query to databse vectors.
*/
struct IndexIVF: Index, Level1Quantizer {
/// Acess to the actual data
InvertedLists *invlists;
bool own_invlists;
size_t code_size; ///< code size per vector in bytes
size_t nprobe; ///< number of probes at query time
size_t max_codes; ///< max nb of codes to visit to do a query
/** Parallel mode determines how queries are parallelized with OpenMP
*
* 0 (default): parallelize over queries
* 1: parallelize over over inverted lists
* 2: parallelize over both
*/
int parallel_mode;
/// map for direct access to the elements. Enables reconstruct().
bool maintain_direct_map;
std::vector <idx_t> direct_map;
/** The Inverted file takes a quantizer (an Index) on input,
* which implements the function mapping a vector to a list
* identifier. The pointer is borrowed: the quantizer should not
* be deleted while the IndexIVF is in use.
*/
IndexIVF (Index * quantizer, size_t d,
size_t nlist, size_t code_size,
MetricType metric = METRIC_L2);
void reset() override;
/// Trains the quantizer and calls train_residual to train sub-quantizers
void train(idx_t n, const float* x) override;
/// Calls add_with_ids with NULL ids
void add(idx_t n, const float* x) override;
/// default implementation that calls encode_vectors
void add_with_ids(idx_t n, const float* x, const idx_t* xids) override;
/** Encodes a set of vectors as they would appear in the inverted lists
*
* @param list_nos inverted list ids as returned by the
* quantizer (size n). -1s are ignored.
* @param codes output codes, size n * code_size
* @param include_listno
* include the list ids in the code (in this case add
* ceil(log8(nlist)) to the code size)
*/
virtual void encode_vectors(idx_t n, const float* x,
const idx_t *list_nos,
uint8_t * codes,
bool include_listno = false) const = 0;
/// Sub-classes that encode the residuals can train their encoders here
/// does nothing by default
virtual void train_residual (idx_t n, const float *x);
/** search a set of vectors, that are pre-quantized by the IVF
* quantizer. Fill in the corresponding heaps with the query
* results. The default implementation uses InvertedListScanners
* to do the search.
*
* @param n nb of vectors to query
* @param x query vectors, size nx * d
* @param assign coarse quantization indices, size nx * nprobe
* @param centroid_dis
* distances to coarse centroids, size nx * nprobe
* @param distance
* output distances, size n * k
* @param labels output labels, size n * k
* @param store_pairs store inv list index + inv list offset
* instead in upper/lower 32 bit of result,
* instead of ids (used for reranking).
* @param params used to override the object's search parameters
*/
virtual void search_preassigned (idx_t n, const float *x, idx_t k,
const idx_t *assign,
const float *centroid_dis,
float *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params=nullptr
) const;
/** assign the vectors, then call search_preassign */
void search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const override;
void range_search (idx_t n, const float* x, float radius,
RangeSearchResult* result) const override;
void range_search_preassigned(idx_t nx, const float *x, float radius,
const idx_t *keys, const float *coarse_dis,
RangeSearchResult *result) const;
/// get a scanner for this index (store_pairs means ignore labels)
virtual InvertedListScanner *get_InvertedListScanner (
bool store_pairs=false) const;
void reconstruct (idx_t key, float* recons) const override;
/** Reconstruct a subset of the indexed vectors.
*
* Overrides default implementation to bypass reconstruct() which requires
* direct_map to be maintained.
*
* @param i0 first vector to reconstruct
* @param ni nb of vectors to reconstruct
* @param recons output array of reconstructed vectors, size ni * d
*/
void reconstruct_n(idx_t i0, idx_t ni, float* recons) const override;
/** Similar to search, but also reconstructs the stored vectors (or an
* approximation in the case of lossy coding) for the search results.
*
* Overrides default implementation to avoid having to maintain direct_map
* and instead fetch the code offsets through the `store_pairs` flag in
* search_preassigned().
*
* @param recons reconstructed vectors size (n, k, d)
*/
void search_and_reconstruct (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels,
float *recons) const override;
/** Reconstruct a vector given the location in terms of (inv list index +
* inv list offset) instead of the id.
*
* Useful for reconstructing when the direct_map is not maintained and
* the inv list offset is computed by search_preassigned() with
* `store_pairs` set.
*/
virtual void reconstruct_from_offset (int64_t list_no, int64_t offset,
float* recons) const;
/// Dataset manipulation functions
size_t remove_ids(const IDSelector& sel) override;
/** check that the two indexes are compatible (ie, they are
* trained in the same way and have the same
* parameters). Otherwise throw. */
void check_compatible_for_merge (const IndexIVF &other) const;
/** moves the entries from another dataset to self. On output,
* other is empty. add_id is added to all moved ids (for
* sequential ids, this would be this->ntotal */
virtual void merge_from (IndexIVF &other, idx_t add_id);
/** copy a subset of the entries index to the other index
*
* if subset_type == 0: copies ids in [a1, a2)
* if subset_type == 1: copies ids if id % a1 == a2
* if subset_type == 2: copies inverted lists such that a1
* elements are left before and a2 elements are after
*/
virtual void copy_subset_to (IndexIVF & other, int subset_type,
idx_t a1, idx_t a2) const;
virtual void to_readonly();
virtual bool is_readonly() const;
virtual void backup_quantizer();
virtual void restore_quantizer();
~IndexIVF() override;
size_t get_list_size (size_t list_no) const
{ return invlists->list_size(list_no); }
/** intialize a direct map
*
* @param new_maintain_direct_map if true, create a direct map,
* else clear it
*/
void make_direct_map (bool new_maintain_direct_map=true);
/// replace the inverted lists, old one is deallocated if own_invlists
void replace_invlists (InvertedLists *il, bool own=false);
/* The standalone codec interface (except sa_decode that is specific) */
size_t sa_code_size () const override;
void sa_encode (idx_t n, const float *x,
uint8_t *bytes) const override;
void dump();
IndexIVF ();
};
struct RangeQueryResult;
/** Object that handles a query. The inverted lists to scan are
* provided externally. The object has a lot of state, but
* distance_to_code and scan_codes can be called in multiple
* threads */
struct InvertedListScanner {
using idx_t = Index::idx_t;
/// from now on we handle this query.
virtual void set_query (const float *query_vector) = 0;
/// following codes come from this inverted list
virtual void set_list (idx_t list_no, float coarse_dis) = 0;
/// compute a single query-to-code distance
virtual float distance_to_code (const uint8_t *code) const = 0;
/** scan a set of codes, compute distances to current query and
* update heap of results if necessary.
*
* @param n number of codes to scan
* @param codes codes to scan (n * code_size)
* @param ids corresponding ids (ignored if store_pairs)
* @param distances heap distances (size k)
* @param labels heap labels (size k)
* @param k heap size
* @return number of heap updates performed
*/
virtual size_t scan_codes (size_t n,
const uint8_t *codes,
const idx_t *ids,
float *distances, idx_t *labels,
size_t k) const = 0;
/** scan a set of codes, compute distances to current query and
* update results if distances are below radius
*
* (default implementation fails) */
virtual void scan_codes_range (size_t n,
const uint8_t *codes,
const idx_t *ids,
float radius,
RangeQueryResult &result) const;
virtual ~InvertedListScanner () {}
};
struct IndexIVFStats {
size_t nq; // nb of queries run
size_t nlist; // nb of inverted lists scanned
size_t ndis; // nb of distancs computed
size_t nheap_updates; // nb of times the heap was updated
double quantization_time; // time spent quantizing vectors (in ms)
double search_time; // time spent searching lists (in ms)
IndexIVFStats () {reset (); }
void reset ();
};
// global var that collects them all
extern IndexIVFStats indexIVF_stats;
} // namespace faiss
#endif

View File

@ -0,0 +1,502 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexIVFFlat.h>
#include <cstdio>
#include <faiss/IndexFlat.h>
#include <faiss/utils/distances.h>
#include <faiss/utils/utils.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/impl/AuxIndexStructures.h>
namespace faiss {
/*****************************************
* IndexIVFFlat implementation
******************************************/
IndexIVFFlat::IndexIVFFlat (Index * quantizer,
size_t d, size_t nlist, MetricType metric):
IndexIVF (quantizer, d, nlist, sizeof(float) * d, metric)
{
code_size = sizeof(float) * d;
}
void IndexIVFFlat::add_with_ids (idx_t n, const float * x, const idx_t *xids)
{
add_core (n, x, xids, nullptr);
}
void IndexIVFFlat::add_core (idx_t n, const float * x, const int64_t *xids,
const int64_t *precomputed_idx)
{
FAISS_THROW_IF_NOT (is_trained);
assert (invlists);
FAISS_THROW_IF_NOT_MSG (!(maintain_direct_map && xids),
"cannot have direct map and add with ids");
const int64_t * idx;
ScopeDeleter<int64_t> del;
if (precomputed_idx) {
idx = precomputed_idx;
} else {
int64_t * idx0 = new int64_t [n];
del.set (idx0);
quantizer->assign (n, x, idx0);
idx = idx0;
}
int64_t n_add = 0;
for (size_t i = 0; i < n; i++) {
int64_t id = xids ? xids[i] : ntotal + i;
int64_t list_no = idx [i];
if (list_no < 0)
continue;
const float *xi = x + i * d;
size_t offset = invlists->add_entry (
list_no, id, (const uint8_t*) xi);
if (maintain_direct_map)
direct_map.push_back (list_no << 32 | offset);
n_add++;
}
if (verbose) {
printf("IndexIVFFlat::add_core: added %ld / %ld vectors\n",
n_add, n);
}
ntotal += n;
}
void IndexIVFFlat::encode_vectors(idx_t n, const float* x,
const idx_t * list_nos,
uint8_t * codes,
bool include_listnos) const
{
if (!include_listnos) {
memcpy (codes, x, code_size * n);
} else {
size_t coarse_size = coarse_code_size ();
for (size_t i = 0; i < n; i++) {
int64_t list_no = list_nos [i];
uint8_t *code = codes + i * (code_size + coarse_size);
const float *xi = x + i * d;
if (list_no >= 0) {
encode_listno (list_no, code);
memcpy (code + coarse_size, xi, code_size);
} else {
memset (code, 0, code_size + coarse_size);
}
}
}
}
void IndexIVFFlat::sa_decode (idx_t n, const uint8_t *bytes,
float *x) const
{
size_t coarse_size = coarse_code_size ();
for (size_t i = 0; i < n; i++) {
const uint8_t *code = bytes + i * (code_size + coarse_size);
float *xi = x + i * d;
memcpy (xi, code + coarse_size, code_size);
}
}
namespace {
template<MetricType metric, class C>
struct IVFFlatScanner: InvertedListScanner {
size_t d;
bool store_pairs;
IVFFlatScanner(size_t d, bool store_pairs):
d(d), store_pairs(store_pairs) {}
const float *xi;
void set_query (const float *query) override {
this->xi = query;
}
idx_t list_no;
void set_list (idx_t list_no, float /* coarse_dis */) override {
this->list_no = list_no;
}
float distance_to_code (const uint8_t *code) const override {
const float *yj = (float*)code;
float dis = metric == METRIC_INNER_PRODUCT ?
fvec_inner_product (xi, yj, d) : fvec_L2sqr (xi, yj, d);
return dis;
}
size_t scan_codes (size_t list_size,
const uint8_t *codes,
const idx_t *ids,
float *simi, idx_t *idxi,
size_t k) const override
{
const float *list_vecs = (const float*)codes;
size_t nup = 0;
for (size_t j = 0; j < list_size; j++) {
const float * yj = list_vecs + d * j;
float dis = metric == METRIC_INNER_PRODUCT ?
fvec_inner_product (xi, yj, d) : fvec_L2sqr (xi, yj, d);
if (C::cmp (simi[0], dis)) {
heap_pop<C> (k, simi, idxi);
int64_t id = store_pairs ? (list_no << 32 | j) : ids[j];
heap_push<C> (k, simi, idxi, dis, id);
nup++;
}
}
return nup;
}
void scan_codes_range (size_t list_size,
const uint8_t *codes,
const idx_t *ids,
float radius,
RangeQueryResult & res) const override
{
const float *list_vecs = (const float*)codes;
for (size_t j = 0; j < list_size; j++) {
const float * yj = list_vecs + d * j;
float dis = metric == METRIC_INNER_PRODUCT ?
fvec_inner_product (xi, yj, d) : fvec_L2sqr (xi, yj, d);
if (C::cmp (radius, dis)) {
int64_t id = store_pairs ? (list_no << 32 | j) : ids[j];
res.add (dis, id);
}
}
}
};
} // anonymous namespace
InvertedListScanner* IndexIVFFlat::get_InvertedListScanner
(bool store_pairs) const
{
if (metric_type == METRIC_INNER_PRODUCT) {
return new IVFFlatScanner<
METRIC_INNER_PRODUCT, CMin<float, int64_t> > (d, store_pairs);
} else if (metric_type == METRIC_L2) {
return new IVFFlatScanner<
METRIC_L2, CMax<float, int64_t> >(d, store_pairs);
} else {
FAISS_THROW_MSG("metric type not supported");
}
return nullptr;
}
void IndexIVFFlat::update_vectors (int n, idx_t *new_ids, const float *x)
{
FAISS_THROW_IF_NOT (maintain_direct_map);
FAISS_THROW_IF_NOT (is_trained);
std::vector<idx_t> assign (n);
quantizer->assign (n, x, assign.data());
for (size_t i = 0; i < n; i++) {
idx_t id = new_ids[i];
FAISS_THROW_IF_NOT_MSG (0 <= id && id < ntotal,
"id to update out of range");
{ // remove old one
int64_t dm = direct_map[id];
int64_t ofs = dm & 0xffffffff;
int64_t il = dm >> 32;
size_t l = invlists->list_size (il);
if (ofs != l - 1) { // move l - 1 to ofs
int64_t id2 = invlists->get_single_id (il, l - 1);
direct_map[id2] = (il << 32) | ofs;
invlists->update_entry (il, ofs, id2,
invlists->get_single_code (il, l - 1));
}
invlists->resize (il, l - 1);
}
{ // insert new one
int64_t il = assign[i];
size_t l = invlists->list_size (il);
int64_t dm = (il << 32) | l;
direct_map[id] = dm;
invlists->add_entry (il, id, (const uint8_t*)(x + i * d));
}
}
}
void IndexIVFFlat::reconstruct_from_offset (int64_t list_no, int64_t offset,
float* recons) const
{
memcpy (recons, invlists->get_single_code (list_no, offset), code_size);
}
/*****************************************
* IndexIVFFlatDedup implementation
******************************************/
IndexIVFFlatDedup::IndexIVFFlatDedup (
Index * quantizer, size_t d, size_t nlist_,
MetricType metric_type):
IndexIVFFlat (quantizer, d, nlist_, metric_type)
{}
void IndexIVFFlatDedup::train(idx_t n, const float* x)
{
std::unordered_map<uint64_t, idx_t> map;
float * x2 = new float [n * d];
ScopeDeleter<float> del (x2);
int64_t n2 = 0;
for (int64_t i = 0; i < n; i++) {
uint64_t hash = hash_bytes((uint8_t *)(x + i * d), code_size);
if (map.count(hash) &&
!memcmp (x2 + map[hash] * d, x + i * d, code_size)) {
// is duplicate, skip
} else {
map [hash] = n2;
memcpy (x2 + n2 * d, x + i * d, code_size);
n2 ++;
}
}
if (verbose) {
printf ("IndexIVFFlatDedup::train: train on %ld points after dedup "
"(was %ld points)\n", n2, n);
}
IndexIVFFlat::train (n2, x2);
}
void IndexIVFFlatDedup::add_with_ids(
idx_t na, const float* x, const idx_t* xids)
{
FAISS_THROW_IF_NOT (is_trained);
assert (invlists);
FAISS_THROW_IF_NOT_MSG (
!maintain_direct_map,
"IVFFlatDedup not implemented with direct_map");
int64_t * idx = new int64_t [na];
ScopeDeleter<int64_t> del (idx);
quantizer->assign (na, x, idx);
int64_t n_add = 0, n_dup = 0;
// TODO make a omp loop with this
for (size_t i = 0; i < na; i++) {
idx_t id = xids ? xids[i] : ntotal + i;
int64_t list_no = idx [i];
if (list_no < 0) {
continue;
}
const float *xi = x + i * d;
// search if there is already an entry with that id
InvertedLists::ScopedCodes codes (invlists, list_no);
int64_t n = invlists->list_size (list_no);
int64_t offset = -1;
for (int64_t o = 0; o < n; o++) {
if (!memcmp (codes.get() + o * code_size,
xi, code_size)) {
offset = o;
break;
}
}
if (offset == -1) { // not found
invlists->add_entry (list_no, id, (const uint8_t*) xi);
} else {
// mark equivalence
idx_t id2 = invlists->get_single_id (list_no, offset);
std::pair<idx_t, idx_t> pair (id2, id);
instances.insert (pair);
n_dup ++;
}
n_add++;
}
if (verbose) {
printf("IndexIVFFlat::add_with_ids: added %ld / %ld vectors"
" (out of which %ld are duplicates)\n",
n_add, na, n_dup);
}
ntotal += n_add;
}
void IndexIVFFlatDedup::search_preassigned (
idx_t n, const float *x, idx_t k,
const idx_t *assign,
const float *centroid_dis,
float *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params) const
{
FAISS_THROW_IF_NOT_MSG (
!store_pairs, "store_pairs not supported in IVFDedup");
IndexIVFFlat::search_preassigned (n, x, k, assign, centroid_dis,
distances, labels, false,
params);
std::vector <idx_t> labels2 (k);
std::vector <float> dis2 (k);
for (int64_t i = 0; i < n; i++) {
idx_t *labels1 = labels + i * k;
float *dis1 = distances + i * k;
int64_t j = 0;
for (; j < k; j++) {
if (instances.find (labels1[j]) != instances.end ()) {
// a duplicate: special handling
break;
}
}
if (j < k) {
// there are duplicates, special handling
int64_t j0 = j;
int64_t rp = j;
while (j < k) {
auto range = instances.equal_range (labels1[rp]);
float dis = dis1[rp];
labels2[j] = labels1[rp];
dis2[j] = dis;
j ++;
for (auto it = range.first; j < k && it != range.second; ++it) {
labels2[j] = it->second;
dis2[j] = dis;
j++;
}
rp++;
}
memcpy (labels1 + j0, labels2.data() + j0,
sizeof(labels1[0]) * (k - j0));
memcpy (dis1 + j0, dis2.data() + j0,
sizeof(dis2[0]) * (k - j0));
}
}
}
size_t IndexIVFFlatDedup::remove_ids(const IDSelector& sel)
{
std::unordered_map<idx_t, idx_t> replace;
std::vector<std::pair<idx_t, idx_t> > toadd;
for (auto it = instances.begin(); it != instances.end(); ) {
if (sel.is_member(it->first)) {
// then we erase this entry
if (!sel.is_member(it->second)) {
// if the second is not erased
if (replace.count(it->first) == 0) {
replace[it->first] = it->second;
} else { // remember we should add an element
std::pair<idx_t, idx_t> new_entry (
replace[it->first], it->second);
toadd.push_back(new_entry);
}
}
it = instances.erase(it);
} else {
if (sel.is_member(it->second)) {
it = instances.erase(it);
} else {
++it;
}
}
}
instances.insert (toadd.begin(), toadd.end());
// mostly copied from IndexIVF.cpp
FAISS_THROW_IF_NOT_MSG (!maintain_direct_map,
"direct map remove not implemented");
std::vector<int64_t> toremove(nlist);
#pragma omp parallel for
for (int64_t i = 0; i < nlist; i++) {
int64_t l0 = invlists->list_size (i), l = l0, j = 0;
InvertedLists::ScopedIds idsi (invlists, i);
while (j < l) {
if (sel.is_member (idsi[j])) {
if (replace.count(idsi[j]) == 0) {
l--;
invlists->update_entry (
i, j,
invlists->get_single_id (i, l),
InvertedLists::ScopedCodes (invlists, i, l).get());
} else {
invlists->update_entry (
i, j,
replace[idsi[j]],
InvertedLists::ScopedCodes (invlists, i, j).get());
j++;
}
} else {
j++;
}
}
toremove[i] = l0 - l;
}
// this will not run well in parallel on ondisk because of possible shrinks
int64_t nremove = 0;
for (int64_t i = 0; i < nlist; i++) {
if (toremove[i] > 0) {
nremove += toremove[i];
invlists->resize(
i, invlists->list_size(i) - toremove[i]);
}
}
ntotal -= nremove;
return nremove;
}
void IndexIVFFlatDedup::range_search(
idx_t ,
const float* ,
float ,
RangeSearchResult* ) const
{
FAISS_THROW_MSG ("not implemented");
}
void IndexIVFFlatDedup::update_vectors (int , idx_t *, const float *)
{
FAISS_THROW_MSG ("not implemented");
}
void IndexIVFFlatDedup::reconstruct_from_offset (
int64_t , int64_t , float* ) const
{
FAISS_THROW_MSG ("not implemented");
}
} // namespace faiss

View File

@ -0,0 +1,118 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_IVF_FLAT_H
#define FAISS_INDEX_IVF_FLAT_H
#include <unordered_map>
#include <stdint.h>
#include <faiss/IndexIVF.h>
namespace faiss {
/** Inverted file with stored vectors. Here the inverted file
* pre-selects the vectors to be searched, but they are not otherwise
* encoded, the code array just contains the raw float entries.
*/
struct IndexIVFFlat: IndexIVF {
IndexIVFFlat (
Index * quantizer, size_t d, size_t nlist_,
MetricType = METRIC_L2);
/// same as add_with_ids, with precomputed coarse quantizer
virtual void add_core (idx_t n, const float * x, const int64_t *xids,
const int64_t *precomputed_idx);
/// implemented for all IndexIVF* classes
void add_with_ids(idx_t n, const float* x, const idx_t* xids) override;
void encode_vectors(idx_t n, const float* x,
const idx_t *list_nos,
uint8_t * codes,
bool include_listnos=false) const override;
InvertedListScanner *get_InvertedListScanner (bool store_pairs)
const override;
/** Update a subset of vectors.
*
* The index must have a direct_map
*
* @param nv nb of vectors to update
* @param idx vector indices to update, size nv
* @param v vectors of new values, size nv*d
*/
virtual void update_vectors (int nv, idx_t *idx, const float *v);
void reconstruct_from_offset (int64_t list_no, int64_t offset,
float* recons) const override;
void sa_decode (idx_t n, const uint8_t *bytes,
float *x) const override;
IndexIVFFlat () {}
};
struct IndexIVFFlatDedup: IndexIVFFlat {
/** Maps ids stored in the index to the ids of vectors that are
* the same. When a vector is unique, it does not appear in the
* instances map */
std::unordered_multimap <idx_t, idx_t> instances;
IndexIVFFlatDedup (
Index * quantizer, size_t d, size_t nlist_,
MetricType = METRIC_L2);
/// also dedups the training set
void train(idx_t n, const float* x) override;
/// implemented for all IndexIVF* classes
void add_with_ids(idx_t n, const float* x, const idx_t* xids) override;
void search_preassigned (idx_t n, const float *x, idx_t k,
const idx_t *assign,
const float *centroid_dis,
float *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params=nullptr
) const override;
size_t remove_ids(const IDSelector& sel) override;
/// not implemented
void range_search(
idx_t n,
const float* x,
float radius,
RangeSearchResult* result) const override;
/// not implemented
void update_vectors (int nv, idx_t *idx, const float *v) override;
/// not implemented
void reconstruct_from_offset (int64_t list_no, int64_t offset,
float* recons) const override;
IndexIVFFlatDedup () {}
};
} // namespace faiss
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,161 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_IVFPQ_H
#define FAISS_INDEX_IVFPQ_H
#include <vector>
#include <faiss/IndexIVF.h>
#include <faiss/IndexPQ.h>
namespace faiss {
struct IVFPQSearchParameters: IVFSearchParameters {
size_t scan_table_threshold; ///< use table computation or on-the-fly?
int polysemous_ht; ///< Hamming thresh for polysemous filtering
~IVFPQSearchParameters () {}
};
/** Inverted file with Product Quantizer encoding. Each residual
* vector is encoded as a product quantizer code.
*/
struct IndexIVFPQ: IndexIVF {
bool by_residual; ///< Encode residual or plain vector?
ProductQuantizer pq; ///< produces the codes
bool do_polysemous_training; ///< reorder PQ centroids after training?
PolysemousTraining *polysemous_training; ///< if NULL, use default
// search-time parameters
size_t scan_table_threshold; ///< use table computation or on-the-fly?
int polysemous_ht; ///< Hamming thresh for polysemous filtering
/** Precompute table that speed up query preprocessing at some
* memory cost
* =-1: force disable
* =0: decide heuristically (default: use tables only if they are
* < precomputed_tables_max_bytes)
* =1: tables that work for all quantizers (size 256 * nlist * M)
* =2: specific version for MultiIndexQuantizer (much more compact)
*/
int use_precomputed_table; ///< if by_residual, build precompute tables
static size_t precomputed_table_max_bytes;
/// if use_precompute_table
/// size nlist * pq.M * pq.ksub
std::vector <float> precomputed_table;
IndexIVFPQ (
Index * quantizer, size_t d, size_t nlist,
size_t M, size_t nbits_per_idx);
void add_with_ids(idx_t n, const float* x, const idx_t* xids = nullptr)
override;
void encode_vectors(idx_t n, const float* x,
const idx_t *list_nos,
uint8_t * codes,
bool include_listnos = false) const override;
void sa_decode (idx_t n, const uint8_t *bytes,
float *x) const override;
/// same as add_core, also:
/// - output 2nd level residuals if residuals_2 != NULL
/// - use precomputed list numbers if precomputed_idx != NULL
void add_core_o (idx_t n, const float *x,
const idx_t *xids, float *residuals_2,
const idx_t *precomputed_idx = nullptr);
/// trains the product quantizer
void train_residual(idx_t n, const float* x) override;
/// same as train_residual, also output 2nd level residuals
void train_residual_o (idx_t n, const float *x, float *residuals_2);
void reconstruct_from_offset (int64_t list_no, int64_t offset,
float* recons) const override;
/** Find exact duplicates in the dataset.
*
* the duplicates are returned in pre-allocated arrays (see the
* max sizes).
*
* @params lims limits between groups of duplicates
* (max size ntotal / 2 + 1)
* @params ids ids[lims[i]] : ids[lims[i+1]-1] is a group of
* duplicates (max size ntotal)
* @return n number of groups found
*/
size_t find_duplicates (idx_t *ids, size_t *lims) const;
// map a vector to a binary code knowning the index
void encode (idx_t key, const float * x, uint8_t * code) const;
/** Encode multiple vectors
*
* @param n nb vectors to encode
* @param keys posting list ids for those vectors (size n)
* @param x vectors (size n * d)
* @param codes output codes (size n * code_size)
* @param compute_keys if false, assume keys are precomputed,
* otherwise compute them
*/
void encode_multiple (size_t n, idx_t *keys,
const float * x, uint8_t * codes,
bool compute_keys = false) const;
/// inverse of encode_multiple
void decode_multiple (size_t n, const idx_t *keys,
const uint8_t * xcodes, float * x) const;
InvertedListScanner *get_InvertedListScanner (bool store_pairs)
const override;
/// build precomputed table
void precompute_table ();
IndexIVFPQ ();
};
/// statistics are robust to internal threading, but not if
/// IndexIVFPQ::search_preassigned is called by multiple threads
struct IndexIVFPQStats {
size_t nrefine; // nb of refines (IVFPQR)
size_t n_hamming_pass;
// nb of passed Hamming distance tests (for polysemous)
// timings measured with the CPU RTC
// on all threads
size_t search_cycles;
size_t refine_cycles; // only for IVFPQR
IndexIVFPQStats () {reset (); }
void reset ();
};
// global var that collects them all
extern IndexIVFPQStats indexIVFPQ_stats;
} // namespace faiss
#endif

View File

@ -0,0 +1,219 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexIVFPQR.h>
#include <faiss/utils/Heap.h>
#include <faiss/utils/utils.h>
#include <faiss/utils/distances.h>
#include <faiss/impl/FaissAssert.h>
namespace faiss {
/*****************************************
* IndexIVFPQR implementation
******************************************/
IndexIVFPQR::IndexIVFPQR (
Index * quantizer, size_t d, size_t nlist,
size_t M, size_t nbits_per_idx,
size_t M_refine, size_t nbits_per_idx_refine):
IndexIVFPQ (quantizer, d, nlist, M, nbits_per_idx),
refine_pq (d, M_refine, nbits_per_idx_refine),
k_factor (4)
{
by_residual = true;
}
IndexIVFPQR::IndexIVFPQR ():
k_factor (1)
{
by_residual = true;
}
void IndexIVFPQR::reset()
{
IndexIVFPQ::reset();
refine_codes.clear();
}
void IndexIVFPQR::train_residual (idx_t n, const float *x)
{
float * residual_2 = new float [n * d];
ScopeDeleter <float> del(residual_2);
train_residual_o (n, x, residual_2);
if (verbose)
printf ("training %zdx%zd 2nd level PQ quantizer on %ld %dD-vectors\n",
refine_pq.M, refine_pq.ksub, n, d);
refine_pq.cp.max_points_per_centroid = 1000;
refine_pq.cp.verbose = verbose;
refine_pq.train (n, residual_2);
}
void IndexIVFPQR::add_with_ids (idx_t n, const float *x, const idx_t *xids) {
add_core (n, x, xids, nullptr);
}
void IndexIVFPQR::add_core (idx_t n, const float *x, const idx_t *xids,
const idx_t *precomputed_idx) {
float * residual_2 = new float [n * d];
ScopeDeleter <float> del(residual_2);
idx_t n0 = ntotal;
add_core_o (n, x, xids, residual_2, precomputed_idx);
refine_codes.resize (ntotal * refine_pq.code_size);
refine_pq.compute_codes (
residual_2, &refine_codes[n0 * refine_pq.code_size], n);
}
#define TIC t0 = get_cycles()
#define TOC get_cycles () - t0
void IndexIVFPQR::search_preassigned (idx_t n, const float *x, idx_t k,
const idx_t *idx,
const float *L1_dis,
float *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params
) const
{
uint64_t t0;
TIC;
size_t k_coarse = long(k * k_factor);
idx_t *coarse_labels = new idx_t [k_coarse * n];
ScopeDeleter<idx_t> del1 (coarse_labels);
{ // query with quantizer levels 1 and 2.
float *coarse_distances = new float [k_coarse * n];
ScopeDeleter<float> del(coarse_distances);
IndexIVFPQ::search_preassigned (
n, x, k_coarse,
idx, L1_dis, coarse_distances, coarse_labels,
true, params);
}
indexIVFPQ_stats.search_cycles += TOC;
TIC;
// 3rd level refinement
size_t n_refine = 0;
#pragma omp parallel reduction(+ : n_refine)
{
// tmp buffers
float *residual_1 = new float [2 * d];
ScopeDeleter<float> del (residual_1);
float *residual_2 = residual_1 + d;
#pragma omp for
for (idx_t i = 0; i < n; i++) {
const float *xq = x + i * d;
const idx_t * shortlist = coarse_labels + k_coarse * i;
float * heap_sim = distances + k * i;
idx_t * heap_ids = labels + k * i;
maxheap_heapify (k, heap_sim, heap_ids);
for (int j = 0; j < k_coarse; j++) {
idx_t sl = shortlist[j];
if (sl == -1) continue;
int list_no = sl >> 32;
int ofs = sl & 0xffffffff;
assert (list_no >= 0 && list_no < nlist);
assert (ofs >= 0 && ofs < invlists->list_size (list_no));
// 1st level residual
quantizer->compute_residual (xq, residual_1, list_no);
// 2nd level residual
const uint8_t * l2code =
invlists->get_single_code (list_no, ofs);
pq.decode (l2code, residual_2);
for (int l = 0; l < d; l++)
residual_2[l] = residual_1[l] - residual_2[l];
// 3rd level residual's approximation
idx_t id = invlists->get_single_id (list_no, ofs);
assert (0 <= id && id < ntotal);
refine_pq.decode (&refine_codes [id * refine_pq.code_size],
residual_1);
float dis = fvec_L2sqr (residual_1, residual_2, d);
if (dis < heap_sim[0]) {
maxheap_pop (k, heap_sim, heap_ids);
idx_t id_or_pair = store_pairs ? sl : id;
maxheap_push (k, heap_sim, heap_ids, dis, id_or_pair);
}
n_refine ++;
}
maxheap_reorder (k, heap_sim, heap_ids);
}
}
indexIVFPQ_stats.nrefine += n_refine;
indexIVFPQ_stats.refine_cycles += TOC;
}
void IndexIVFPQR::reconstruct_from_offset (int64_t list_no, int64_t offset,
float* recons) const
{
IndexIVFPQ::reconstruct_from_offset (list_no, offset, recons);
idx_t id = invlists->get_single_id (list_no, offset);
assert (0 <= id && id < ntotal);
std::vector<float> r3(d);
refine_pq.decode (&refine_codes [id * refine_pq.code_size], r3.data());
for (int i = 0; i < d; ++i) {
recons[i] += r3[i];
}
}
void IndexIVFPQR::merge_from (IndexIVF &other_in, idx_t add_id)
{
IndexIVFPQR *other = dynamic_cast<IndexIVFPQR *> (&other_in);
FAISS_THROW_IF_NOT(other);
IndexIVF::merge_from (other_in, add_id);
refine_codes.insert (refine_codes.end(),
other->refine_codes.begin(),
other->refine_codes.end());
other->refine_codes.clear();
}
size_t IndexIVFPQR::remove_ids(const IDSelector& /*sel*/) {
FAISS_THROW_MSG("not implemented");
return 0;
}
} // namespace faiss

View File

@ -0,0 +1,65 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#pragma once
#include <vector>
#include <faiss/IndexIVFPQ.h>
namespace faiss {
/** Index with an additional level of PQ refinement */
struct IndexIVFPQR: IndexIVFPQ {
ProductQuantizer refine_pq; ///< 3rd level quantizer
std::vector <uint8_t> refine_codes; ///< corresponding codes
/// factor between k requested in search and the k requested from the IVFPQ
float k_factor;
IndexIVFPQR (
Index * quantizer, size_t d, size_t nlist,
size_t M, size_t nbits_per_idx,
size_t M_refine, size_t nbits_per_idx_refine);
void reset() override;
size_t remove_ids(const IDSelector& sel) override;
/// trains the two product quantizers
void train_residual(idx_t n, const float* x) override;
void add_with_ids(idx_t n, const float* x, const idx_t* xids) override;
/// same as add_with_ids, but optionally use the precomputed list ids
void add_core (idx_t n, const float *x, const idx_t *xids,
const idx_t *precomputed_idx = nullptr);
void reconstruct_from_offset (int64_t list_no, int64_t offset,
float* recons) const override;
void merge_from (IndexIVF &other, idx_t add_id) override;
void search_preassigned (idx_t n, const float *x, idx_t k,
const idx_t *assign,
const float *centroid_dis,
float *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params=nullptr
) const override;
IndexIVFPQR();
};
} // namespace faiss

View File

@ -0,0 +1,331 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexIVFSpectralHash.h>
#include <memory>
#include <algorithm>
#include <stdint.h>
#include <faiss/utils/hamming.h>
#include <faiss/utils/utils.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/impl/AuxIndexStructures.h>
#include <faiss/VectorTransform.h>
namespace faiss {
IndexIVFSpectralHash::IndexIVFSpectralHash (
Index * quantizer, size_t d, size_t nlist,
int nbit, float period):
IndexIVF (quantizer, d, nlist, (nbit + 7) / 8, METRIC_L2),
nbit (nbit), period (period), threshold_type (Thresh_global)
{
FAISS_THROW_IF_NOT (code_size % 4 == 0);
RandomRotationMatrix *rr = new RandomRotationMatrix (d, nbit);
rr->init (1234);
vt = rr;
own_fields = true;
is_trained = false;
}
IndexIVFSpectralHash::IndexIVFSpectralHash():
IndexIVF(), vt(nullptr), own_fields(false),
nbit(0), period(0), threshold_type(Thresh_global)
{}
IndexIVFSpectralHash::~IndexIVFSpectralHash ()
{
if (own_fields) {
delete vt;
}
}
namespace {
float median (size_t n, float *x) {
std::sort(x, x + n);
if (n % 2 == 1) {
return x [n / 2];
} else {
return (x [n / 2 - 1] + x [n / 2]) / 2;
}
}
}
void IndexIVFSpectralHash::train_residual (idx_t n, const float *x)
{
if (!vt->is_trained) {
vt->train (n, x);
}
if (threshold_type == Thresh_global) {
// nothing to do
return;
} else if (threshold_type == Thresh_centroid ||
threshold_type == Thresh_centroid_half) {
// convert all centroids with vt
std::vector<float> centroids (nlist * d);
quantizer->reconstruct_n (0, nlist, centroids.data());
trained.resize(nlist * nbit);
vt->apply_noalloc (nlist, centroids.data(), trained.data());
if (threshold_type == Thresh_centroid_half) {
for (size_t i = 0; i < nlist * nbit; i++) {
trained[i] -= 0.25 * period;
}
}
return;
}
// otherwise train medians
// assign
std::unique_ptr<idx_t []> idx (new idx_t [n]);
quantizer->assign (n, x, idx.get());
std::vector<size_t> sizes(nlist + 1);
for (size_t i = 0; i < n; i++) {
FAISS_THROW_IF_NOT (idx[i] >= 0);
sizes[idx[i]]++;
}
size_t ofs = 0;
for (int j = 0; j < nlist; j++) {
size_t o0 = ofs;
ofs += sizes[j];
sizes[j] = o0;
}
// transform
std::unique_ptr<float []> xt (vt->apply (n, x));
// transpose + reorder
std::unique_ptr<float []> xo (new float[n * nbit]);
for (size_t i = 0; i < n; i++) {
size_t idest = sizes[idx[i]]++;
for (size_t j = 0; j < nbit; j++) {
xo[idest + n * j] = xt[i * nbit + j];
}
}
trained.resize (n * nbit);
// compute medians
#pragma omp for
for (int i = 0; i < nlist; i++) {
size_t i0 = i == 0 ? 0 : sizes[i - 1];
size_t i1 = sizes[i];
for (int j = 0; j < nbit; j++) {
float *xoi = xo.get() + i0 + n * j;
if (i0 == i1) { // nothing to train
trained[i * nbit + j] = 0.0;
} else if (i1 == i0 + 1) {
trained[i * nbit + j] = xoi[0];
} else {
trained[i * nbit + j] = median(i1 - i0, xoi);
}
}
}
}
namespace {
void binarize_with_freq(size_t nbit, float freq,
const float *x, const float *c,
uint8_t *codes)
{
memset (codes, 0, (nbit + 7) / 8);
for (size_t i = 0; i < nbit; i++) {
float xf = (x[i] - c[i]);
int xi = int(floor(xf * freq));
int bit = xi & 1;
codes[i >> 3] |= bit << (i & 7);
}
}
};
void IndexIVFSpectralHash::encode_vectors(idx_t n, const float* x_in,
const idx_t *list_nos,
uint8_t * codes,
bool include_listnos) const
{
FAISS_THROW_IF_NOT (is_trained);
float freq = 2.0 / period;
FAISS_THROW_IF_NOT_MSG (!include_listnos, "listnos encoding not supported");
// transform with vt
std::unique_ptr<float []> x (vt->apply (n, x_in));
#pragma omp parallel
{
std::vector<float> zero (nbit);
// each thread takes care of a subset of lists
#pragma omp for
for (size_t i = 0; i < n; i++) {
int64_t list_no = list_nos [i];
if (list_no >= 0) {
const float *c;
if (threshold_type == Thresh_global) {
c = zero.data();
} else {
c = trained.data() + list_no * nbit;
}
binarize_with_freq (nbit, freq,
x.get() + i * nbit, c,
codes + i * code_size) ;
}
}
}
}
namespace {
template<class HammingComputer>
struct IVFScanner: InvertedListScanner {
// copied from index structure
const IndexIVFSpectralHash *index;
size_t code_size;
size_t nbit;
bool store_pairs;
float period, freq;
std::vector<float> q;
std::vector<float> zero;
std::vector<uint8_t> qcode;
HammingComputer hc;
using idx_t = Index::idx_t;
IVFScanner (const IndexIVFSpectralHash * index,
bool store_pairs):
index (index),
code_size(index->code_size),
nbit(index->nbit),
store_pairs(store_pairs),
period(index->period), freq(2.0 / index->period),
q(nbit), zero(nbit), qcode(code_size),
hc(qcode.data(), code_size)
{
}
void set_query (const float *query) override {
FAISS_THROW_IF_NOT(query);
FAISS_THROW_IF_NOT(q.size() == nbit);
index->vt->apply_noalloc (1, query, q.data());
if (index->threshold_type ==
IndexIVFSpectralHash::Thresh_global) {
binarize_with_freq
(nbit, freq, q.data(), zero.data(), qcode.data());
hc.set (qcode.data(), code_size);
}
}
idx_t list_no;
void set_list (idx_t list_no, float /*coarse_dis*/) override {
this->list_no = list_no;
if (index->threshold_type != IndexIVFSpectralHash::Thresh_global) {
const float *c = index->trained.data() + list_no * nbit;
binarize_with_freq (nbit, freq, q.data(), c, qcode.data());
hc.set (qcode.data(), code_size);
}
}
float distance_to_code (const uint8_t *code) const final {
return hc.hamming (code);
}
size_t scan_codes (size_t list_size,
const uint8_t *codes,
const idx_t *ids,
float *simi, idx_t *idxi,
size_t k) const override
{
size_t nup = 0;
for (size_t j = 0; j < list_size; j++) {
float dis = hc.hamming (codes);
if (dis < simi [0]) {
maxheap_pop (k, simi, idxi);
int64_t id = store_pairs ? (list_no << 32 | j) : ids[j];
maxheap_push (k, simi, idxi, dis, id);
nup++;
}
codes += code_size;
}
return nup;
}
void scan_codes_range (size_t list_size,
const uint8_t *codes,
const idx_t *ids,
float radius,
RangeQueryResult & res) const override
{
for (size_t j = 0; j < list_size; j++) {
float dis = hc.hamming (codes);
if (dis < radius) {
int64_t id = store_pairs ? (list_no << 32 | j) : ids[j];
res.add (dis, id);
}
codes += code_size;
}
}
};
} // anonymous namespace
InvertedListScanner* IndexIVFSpectralHash::get_InvertedListScanner
(bool store_pairs) const
{
switch (code_size) {
#define HANDLE_CODE_SIZE(cs) \
case cs: \
return new IVFScanner<HammingComputer ## cs> (this, store_pairs)
HANDLE_CODE_SIZE(4);
HANDLE_CODE_SIZE(8);
HANDLE_CODE_SIZE(16);
HANDLE_CODE_SIZE(20);
HANDLE_CODE_SIZE(32);
HANDLE_CODE_SIZE(64);
#undef HANDLE_CODE_SIZE
default:
if (code_size % 8 == 0) {
return new IVFScanner<HammingComputerM8>(this, store_pairs);
} else if (code_size % 4 == 0) {
return new IVFScanner<HammingComputerM4>(this, store_pairs);
} else {
FAISS_THROW_MSG("not supported");
}
}
}
} // namespace faiss

View File

@ -0,0 +1,75 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_IVFSH_H
#define FAISS_INDEX_IVFSH_H
#include <vector>
#include <faiss/IndexIVF.h>
namespace faiss {
struct VectorTransform;
/** Inverted list that stores binary codes of size nbit. Before the
* binary conversion, the dimension of the vectors is transformed from
* dim d into dim nbit by vt (a random rotation by default).
*
* Each coordinate is subtracted from a value determined by
* threshold_type, and split into intervals of size period. Half of
* the interval is a 0 bit, the other half a 1.
*/
struct IndexIVFSpectralHash: IndexIVF {
VectorTransform *vt; // transformation from d to nbit dim
bool own_fields;
int nbit;
float period;
enum ThresholdType {
Thresh_global,
Thresh_centroid,
Thresh_centroid_half,
Thresh_median
};
ThresholdType threshold_type;
// size nlist * nbit or 0 if Thresh_global
std::vector<float> trained;
IndexIVFSpectralHash (Index * quantizer, size_t d, size_t nlist,
int nbit, float period);
IndexIVFSpectralHash ();
void train_residual(idx_t n, const float* x) override;
void encode_vectors(idx_t n, const float* x,
const idx_t *list_nos,
uint8_t * codes,
bool include_listnos = false) const override;
InvertedListScanner *get_InvertedListScanner (bool store_pairs)
const override;
~IndexIVFSpectralHash () override;
};
}; // namespace faiss
#endif

View File

@ -0,0 +1,225 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexLSH.h>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <faiss/utils/utils.h>
#include <faiss/utils/hamming.h>
#include <faiss/impl/FaissAssert.h>
namespace faiss {
/***************************************************************
* IndexLSH
***************************************************************/
IndexLSH::IndexLSH (idx_t d, int nbits, bool rotate_data, bool train_thresholds):
Index(d), nbits(nbits), rotate_data(rotate_data),
train_thresholds (train_thresholds), rrot(d, nbits)
{
is_trained = !train_thresholds;
bytes_per_vec = (nbits + 7) / 8;
if (rotate_data) {
rrot.init(5);
} else {
FAISS_THROW_IF_NOT (d >= nbits);
}
}
IndexLSH::IndexLSH ():
nbits (0), bytes_per_vec(0), rotate_data (false), train_thresholds (false)
{
}
const float * IndexLSH::apply_preprocess (idx_t n, const float *x) const
{
float *xt = nullptr;
if (rotate_data) {
// also applies bias if exists
xt = rrot.apply (n, x);
} else if (d != nbits) {
assert (nbits < d);
xt = new float [nbits * n];
float *xp = xt;
for (idx_t i = 0; i < n; i++) {
const float *xl = x + i * d;
for (int j = 0; j < nbits; j++)
*xp++ = xl [j];
}
}
if (train_thresholds) {
if (xt == NULL) {
xt = new float [nbits * n];
memcpy (xt, x, sizeof(*x) * n * nbits);
}
float *xp = xt;
for (idx_t i = 0; i < n; i++)
for (int j = 0; j < nbits; j++)
*xp++ -= thresholds [j];
}
return xt ? xt : x;
}
void IndexLSH::train (idx_t n, const float *x)
{
if (train_thresholds) {
thresholds.resize (nbits);
train_thresholds = false;
const float *xt = apply_preprocess (n, x);
ScopeDeleter<float> del (xt == x ? nullptr : xt);
train_thresholds = true;
float * transposed_x = new float [n * nbits];
ScopeDeleter<float> del2 (transposed_x);
for (idx_t i = 0; i < n; i++)
for (idx_t j = 0; j < nbits; j++)
transposed_x [j * n + i] = xt [i * nbits + j];
for (idx_t i = 0; i < nbits; i++) {
float *xi = transposed_x + i * n;
// std::nth_element
std::sort (xi, xi + n);
if (n % 2 == 1)
thresholds [i] = xi [n / 2];
else
thresholds [i] = (xi [n / 2 - 1] + xi [n / 2]) / 2;
}
}
is_trained = true;
}
void IndexLSH::add (idx_t n, const float *x)
{
FAISS_THROW_IF_NOT (is_trained);
codes.resize ((ntotal + n) * bytes_per_vec);
sa_encode (n, x, &codes[ntotal * bytes_per_vec]);
ntotal += n;
}
void IndexLSH::search (
idx_t n,
const float *x,
idx_t k,
float *distances,
idx_t *labels) const
{
FAISS_THROW_IF_NOT (is_trained);
const float *xt = apply_preprocess (n, x);
ScopeDeleter<float> del (xt == x ? nullptr : xt);
uint8_t * qcodes = new uint8_t [n * bytes_per_vec];
ScopeDeleter<uint8_t> del2 (qcodes);
fvecs2bitvecs (xt, qcodes, nbits, n);
int * idistances = new int [n * k];
ScopeDeleter<int> del3 (idistances);
int_maxheap_array_t res = { size_t(n), size_t(k), labels, idistances};
hammings_knn_hc (&res, qcodes, codes.data(),
ntotal, bytes_per_vec, true);
// convert distances to floats
for (int i = 0; i < k * n; i++)
distances[i] = idistances[i];
}
void IndexLSH::transfer_thresholds (LinearTransform *vt) {
if (!train_thresholds) return;
FAISS_THROW_IF_NOT (nbits == vt->d_out);
if (!vt->have_bias) {
vt->b.resize (nbits, 0);
vt->have_bias = true;
}
for (int i = 0; i < nbits; i++)
vt->b[i] -= thresholds[i];
train_thresholds = false;
thresholds.clear();
}
void IndexLSH::reset() {
codes.clear();
ntotal = 0;
}
size_t IndexLSH::sa_code_size () const
{
return bytes_per_vec;
}
void IndexLSH::sa_encode (idx_t n, const float *x,
uint8_t *bytes) const
{
FAISS_THROW_IF_NOT (is_trained);
const float *xt = apply_preprocess (n, x);
ScopeDeleter<float> del (xt == x ? nullptr : xt);
fvecs2bitvecs (xt, bytes, nbits, n);
}
void IndexLSH::sa_decode (idx_t n, const uint8_t *bytes,
float *x) const
{
float *xt = x;
ScopeDeleter<float> del;
if (rotate_data || nbits != d) {
xt = new float [n * nbits];
del.set(xt);
}
bitvecs2fvecs (bytes, xt, nbits, n);
if (train_thresholds) {
float *xp = xt;
for (idx_t i = 0; i < n; i++) {
for (int j = 0; j < nbits; j++) {
*xp++ += thresholds [j];
}
}
}
if (rotate_data) {
rrot.reverse_transform (n, xt, x);
} else if (nbits != d) {
for (idx_t i = 0; i < n; i++) {
memcpy (x + i * d, xt + i * nbits,
nbits * sizeof(xt[0]));
}
}
}
} // namespace faiss

View File

@ -0,0 +1,87 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef INDEX_LSH_H
#define INDEX_LSH_H
#include <vector>
#include <faiss/Index.h>
#include <faiss/VectorTransform.h>
namespace faiss {
/** The sign of each vector component is put in a binary signature */
struct IndexLSH:Index {
typedef unsigned char uint8_t;
int nbits; ///< nb of bits per vector
int bytes_per_vec; ///< nb of 8-bits per encoded vector
bool rotate_data; ///< whether to apply a random rotation to input
bool train_thresholds; ///< whether we train thresholds or use 0
RandomRotationMatrix rrot; ///< optional random rotation
std::vector <float> thresholds; ///< thresholds to compare with
/// encoded dataset
std::vector<uint8_t> codes;
IndexLSH (
idx_t d, int nbits,
bool rotate_data = true,
bool train_thresholds = false);
/** Preprocesses and resizes the input to the size required to
* binarize the data
*
* @param x input vectors, size n * d
* @return output vectors, size n * bits. May be the same pointer
* as x, otherwise it should be deleted by the caller
*/
const float *apply_preprocess (idx_t n, const float *x) const;
void train(idx_t n, const float* x) override;
void add(idx_t n, const float* x) override;
void search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels) const override;
void reset() override;
/// transfer the thresholds to a pre-processing stage (and unset
/// train_thresholds)
void transfer_thresholds (LinearTransform * vt);
~IndexLSH() override {}
IndexLSH ();
/* standalone codec interface */
size_t sa_code_size () const override;
void sa_encode (idx_t n, const float *x,
uint8_t *bytes) const override;
void sa_decode (idx_t n, const uint8_t *bytes,
float *x) const override;
};
}
#endif

View File

@ -0,0 +1,143 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexLattice.h>
#include <faiss/utils/hamming.h> // for the bitstring routines
#include <faiss/impl/FaissAssert.h>
#include <faiss/utils/distances.h>
namespace faiss {
IndexLattice::IndexLattice (idx_t d, int nsq, int scale_nbit, int r2):
Index (d),
nsq (nsq),
dsq (d / nsq),
zn_sphere_codec (dsq, r2),
scale_nbit (scale_nbit)
{
FAISS_THROW_IF_NOT (d % nsq == 0);
lattice_nbit = 0;
while (!( ((uint64_t)1 << lattice_nbit) >= zn_sphere_codec.nv)) {
lattice_nbit++;
}
int total_nbit = (lattice_nbit + scale_nbit) * nsq;
code_size = (total_nbit + 7) / 8;
is_trained = false;
}
void IndexLattice::train(idx_t n, const float* x)
{
// compute ranges per sub-block
trained.resize (nsq * 2);
float * mins = trained.data();
float * maxs = trained.data() + nsq;
for (int sq = 0; sq < nsq; sq++) {
mins[sq] = HUGE_VAL;
maxs[sq] = -1;
}
for (idx_t i = 0; i < n; i++) {
for (int sq = 0; sq < nsq; sq++) {
float norm2 = fvec_norm_L2sqr (x + i * d + sq * dsq, dsq);
if (norm2 > maxs[sq]) maxs[sq] = norm2;
if (norm2 < mins[sq]) mins[sq] = norm2;
}
}
for (int sq = 0; sq < nsq; sq++) {
mins[sq] = sqrtf (mins[sq]);
maxs[sq] = sqrtf (maxs[sq]);
}
is_trained = true;
}
/* The standalone codec interface */
size_t IndexLattice::sa_code_size () const
{
return code_size;
}
void IndexLattice::sa_encode (idx_t n, const float *x, uint8_t *codes) const
{
const float * mins = trained.data();
const float * maxs = mins + nsq;
int64_t sc = int64_t(1) << scale_nbit;
#pragma omp parallel for
for (idx_t i = 0; i < n; i++) {
BitstringWriter wr(codes + i * code_size, code_size);
const float *xi = x + i * d;
for (int j = 0; j < nsq; j++) {
float nj =
(sqrtf(fvec_norm_L2sqr(xi, dsq)) - mins[j])
* sc / (maxs[j] - mins[j]);
if (nj < 0) nj = 0;
if (nj >= sc) nj = sc - 1;
wr.write((int64_t)nj, scale_nbit);
wr.write(zn_sphere_codec.encode(xi), lattice_nbit);
xi += dsq;
}
}
}
void IndexLattice::sa_decode (idx_t n, const uint8_t *codes, float *x) const
{
const float * mins = trained.data();
const float * maxs = mins + nsq;
float sc = int64_t(1) << scale_nbit;
float r = sqrtf(zn_sphere_codec.r2);
#pragma omp parallel for
for (idx_t i = 0; i < n; i++) {
BitstringReader rd(codes + i * code_size, code_size);
float *xi = x + i * d;
for (int j = 0; j < nsq; j++) {
float norm =
(rd.read (scale_nbit) + 0.5) *
(maxs[j] - mins[j]) / sc + mins[j];
norm /= r;
zn_sphere_codec.decode (rd.read (lattice_nbit), xi);
for (int l = 0; l < dsq; l++) {
xi[l] *= norm;
}
xi += dsq;
}
}
}
void IndexLattice::add(idx_t , const float* )
{
FAISS_THROW_MSG("not implemented");
}
void IndexLattice::search(idx_t , const float* , idx_t ,
float* , idx_t* ) const
{
FAISS_THROW_MSG("not implemented");
}
void IndexLattice::reset()
{
FAISS_THROW_MSG("not implemented");
}
} // namespace faiss

View File

@ -0,0 +1,68 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_LATTICE_H
#define FAISS_INDEX_LATTICE_H
#include <vector>
#include <faiss/IndexIVF.h>
#include <faiss/impl/lattice_Zn.h>
namespace faiss {
/** Index that encodes a vector with a series of Zn lattice quantizers
*/
struct IndexLattice: Index {
/// number of sub-vectors
int nsq;
/// dimension of sub-vectors
size_t dsq;
/// the lattice quantizer
ZnSphereCodecAlt zn_sphere_codec;
/// nb bits used to encode the scale, per subvector
int scale_nbit, lattice_nbit;
/// total, in bytes
size_t code_size;
/// mins and maxes of the vector norms, per subquantizer
std::vector<float> trained;
IndexLattice (idx_t d, int nsq, int scale_nbit, int r2);
void train(idx_t n, const float* x) override;
/* The standalone codec interface */
size_t sa_code_size () const override;
void sa_encode (idx_t n, const float *x,
uint8_t *bytes) const override;
void sa_decode (idx_t n, const uint8_t *bytes,
float *x) const override;
/// not implemented
void add(idx_t n, const float* x) override;
void search(idx_t n, const float* x, idx_t k,
float* distances, idx_t* labels) const override;
void reset() override;
};
} // namespace faiss
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,199 @@
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_PQ_H
#define FAISS_INDEX_PQ_H
#include <stdint.h>
#include <vector>
#include <faiss/Index.h>
#include <faiss/impl/ProductQuantizer.h>
#include <faiss/impl/PolysemousTraining.h>
namespace faiss {
/** Index based on a product quantizer. Stored vectors are
* approximated by PQ codes. */
struct IndexPQ: Index {
/// The product quantizer used to encode the vectors
ProductQuantizer pq;
/// Codes. Size ntotal * pq.code_size
std::vector<uint8_t> codes;
/** Constructor.
*
* @param d dimensionality of the input vectors
* @param M number of subquantizers
* @param nbits number of bit per subvector index
*/
IndexPQ (int d, ///< dimensionality of the input vectors
size_t M, ///< number of subquantizers
size_t nbits, ///< number of bit per subvector index
MetricType metric = METRIC_L2);
IndexPQ ();
void train(idx_t n, const float* x) override;
void add(idx_t n, const float* x) override;
void search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels) const override;
void reset() override;
void reconstruct_n(idx_t i0, idx_t ni, float* recons) const override;
void reconstruct(idx_t key, float* recons) const override;
size_t remove_ids(const IDSelector& sel) override;
/* The standalone codec interface */
size_t sa_code_size () const override;
void sa_encode (idx_t n, const float *x,
uint8_t *bytes) const override;
void sa_decode (idx_t n, const uint8_t *bytes,
float *x) const override;
DistanceComputer * get_distance_computer() const override;
/******************************************************
* Polysemous codes implementation
******************************************************/
bool do_polysemous_training; ///< false = standard PQ
/// parameters used for the polysemous training
PolysemousTraining polysemous_training;
/// how to perform the search in search_core
enum Search_type_t {
ST_PQ, ///< asymmetric product quantizer (default)
ST_HE, ///< Hamming distance on codes
ST_generalized_HE, ///< nb of same codes
ST_SDC, ///< symmetric product quantizer (SDC)
ST_polysemous, ///< HE filter (using ht) + PQ combination
ST_polysemous_generalize, ///< Filter on generalized Hamming
};
Search_type_t search_type;
// just encode the sign of the components, instead of using the PQ encoder
// used only for the queries
bool encode_signs;
/// Hamming threshold used for polysemy
int polysemous_ht;
// actual polysemous search
void search_core_polysemous (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const;
/// prepare query for a polysemous search, but instead of
/// computing the result, just get the histogram of Hamming
/// distances. May be computed on a provided dataset if xb != NULL
/// @param dist_histogram (M * nbits + 1)
void hamming_distance_histogram (idx_t n, const float *x,
idx_t nb, const float *xb,
int64_t *dist_histogram);
/** compute pairwise distances between queries and database
*
* @param n nb of query vectors
* @param x query vector, size n * d
* @param dis output distances, size n * ntotal
*/
void hamming_distance_table (idx_t n, const float *x,
int32_t *dis) const;
};
/// statistics are robust to internal threading, but not if
/// IndexPQ::search is called by multiple threads
struct IndexPQStats {
size_t nq; // nb of queries run
size_t ncode; // nb of codes visited
size_t n_hamming_pass; // nb of passed Hamming distance tests (for polysemy)
IndexPQStats () {reset (); }
void reset ();
};
extern IndexPQStats indexPQ_stats;
/** Quantizer where centroids are virtual: they are the Cartesian
* product of sub-centroids. */
struct MultiIndexQuantizer: Index {
ProductQuantizer pq;
MultiIndexQuantizer (int d, ///< dimension of the input vectors
size_t M, ///< number of subquantizers
size_t nbits); ///< number of bit per subvector index
void train(idx_t n, const float* x) override;
void search(
idx_t n, const float* x, idx_t k,
float* distances, idx_t* labels) const override;
/// add and reset will crash at runtime
void add(idx_t n, const float* x) override;
void reset() override;
MultiIndexQuantizer () {}
void reconstruct(idx_t key, float* recons) const override;
};
/** MultiIndexQuantizer where the PQ assignmnet is performed by sub-indexes
*/
struct MultiIndexQuantizer2: MultiIndexQuantizer {
/// M Indexes on d / M dimensions
std::vector<Index*> assign_indexes;
bool own_fields;
MultiIndexQuantizer2 (
int d, size_t M, size_t nbits,
Index **indexes);
MultiIndexQuantizer2 (
int d, size_t nbits,
Index *assign_index_0,
Index *assign_index_1);
void train(idx_t n, const float* x) override;
void search(
idx_t n, const float* x, idx_t k,
float* distances, idx_t* labels) const override;
};
} // namespace faiss
#endif

Some files were not shown because too many files have changed in this diff Show More