mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-06 17:18:35 +08:00
test: add csv import testcase and adjust import testcase tag (#41638)
/kind improvement Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>
This commit is contained in:
parent
4c08090687
commit
1e65e3232f
@ -10,7 +10,6 @@ from base.client_base import TestcaseBase
|
||||
from common import common_func as cf
|
||||
from common import common_type as ct
|
||||
from common.common_params import DefaultVectorIndexParams, DefaultVectorSearchParams
|
||||
from common.milvus_sys import MilvusSys
|
||||
from common.common_type import CaseLabel, CheckTasks
|
||||
from utils.util_log import test_log as log
|
||||
from common.bulk_insert_data import (
|
||||
@ -60,7 +59,7 @@ class TestcaseBaseBulkInsert(TestcaseBase):
|
||||
|
||||
class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L0)
|
||||
@pytest.mark.parametrize("is_row_based", [True])
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128]) # 8, 128
|
||||
@ -149,7 +148,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
results, _ = self.collection_wrap.query(expr=f"{df.pk_field} in {ids}")
|
||||
assert len(results) == len(ids)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L0)
|
||||
@pytest.mark.parametrize("is_row_based", [True])
|
||||
@pytest.mark.parametrize("dim", [128]) # 8
|
||||
@pytest.mark.parametrize("entities", [100]) # 100
|
||||
@ -239,7 +238,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
results, _ = self.collection_wrap.query(expr=expr)
|
||||
assert len(results) == len(ids)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L0)
|
||||
@pytest.mark.parametrize("is_row_based", [True])
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128])
|
||||
@ -334,7 +333,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
results, _ = self.collection_wrap.query(expr=f"{df.pk_field} in {ids}")
|
||||
assert len(results) == len(ids)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.parametrize("is_row_based", [True])
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128])
|
||||
@ -419,7 +418,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
results, _ = self.collection_wrap.query(expr=f"{df.pk_field} in {ids}")
|
||||
assert len(results) == len(ids)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.parametrize("insert_before_bulk_insert", [True, False])
|
||||
def test_insert_before_or_after_bulk_insert(self, insert_before_bulk_insert):
|
||||
"""
|
||||
@ -520,7 +519,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
results, _ = self.collection_wrap.query(expr=expr)
|
||||
assert len(results) == len(ids)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.parametrize("create_index_before_bulk_insert", [True, False])
|
||||
@pytest.mark.parametrize("loaded_before_bulk_insert", [True, False])
|
||||
def test_load_before_or_after_bulk_insert(self, loaded_before_bulk_insert, create_index_before_bulk_insert):
|
||||
@ -609,7 +608,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
results, _ = self.collection_wrap.query(expr=expr)
|
||||
assert len(results) == len(ids)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
def test_index_load_before_bulk_insert(self):
|
||||
"""
|
||||
Steps:
|
||||
@ -755,7 +754,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
res, _ = self.collection_wrap.query(expr=f"{df.json_field}['number'] == 1", output_fields=[df.json_field])
|
||||
assert len(res) == 1
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.parametrize("auto_id", [True])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
@pytest.mark.parametrize("entities", [2000])
|
||||
@ -942,7 +941,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
else:
|
||||
assert len(res) == 0
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
@pytest.mark.parametrize("entities", [2000])
|
||||
@ -1112,7 +1111,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
res, _ = self.collection_wrap.query(expr=f"{df.json_field}['number'] == 1", output_fields=[df.json_field])
|
||||
assert len(res) == 1
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
@pytest.mark.parametrize("entities", [2000])
|
||||
@ -1302,7 +1301,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
else:
|
||||
assert len(res) == 0
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
@pytest.mark.parametrize("entities", [2000])
|
||||
@ -1425,7 +1424,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
assert "address" in fields_from_search
|
||||
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
@pytest.mark.parametrize("entities", [2000])
|
||||
@ -1546,7 +1545,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
assert "name" in fields_from_search
|
||||
assert "address" in fields_from_search
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
@pytest.mark.parametrize("entities", [1000]) # 1000
|
||||
@ -1698,7 +1697,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
else:
|
||||
assert 0 < len(res) < int(entities/len(json_value))
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
@pytest.mark.parametrize("auto_id", [True])
|
||||
@pytest.mark.parametrize("dim", [128])
|
||||
@pytest.mark.parametrize("entities", [1000])
|
||||
@ -1865,7 +1864,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
@pytest.mark.parametrize("entities", [1000]) # 1000
|
||||
@ -2000,7 +1999,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
res, _ = self.collection_wrap.query(expr=f"{df.json_field}['number'] == 1", output_fields=[df.json_field])
|
||||
assert len(res) == int(entities / len(json_value))
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
@pytest.mark.parametrize("entities", [1000]) # 1000
|
||||
@ -2146,7 +2145,151 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
else:
|
||||
assert 0 < len(res) < int(entities/len(json_value))
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
@pytest.mark.parametrize("entities", [1000]) # 1000
|
||||
@pytest.mark.parametrize("enable_dynamic_field", [True, False])
|
||||
@pytest.mark.parametrize("sparse_format", ["doc", "coo"])
|
||||
@pytest.mark.parametrize("nullable", [True, False])
|
||||
def test_with_all_field_csv_with_bulk_writer(self, auto_id, dim, entities, enable_dynamic_field, sparse_format, nullable):
|
||||
"""
|
||||
"""
|
||||
self._connect()
|
||||
fields = [
|
||||
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
|
||||
cf.gen_int64_field(name=df.int_field, nullable=nullable),
|
||||
cf.gen_float_field(name=df.float_field, nullable=nullable),
|
||||
cf.gen_string_field(name=df.string_field, nullable=nullable),
|
||||
cf.gen_json_field(name=df.json_field, nullable=nullable),
|
||||
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64, nullable=nullable),
|
||||
cf.gen_array_field(name=df.array_float_field, element_type=DataType.FLOAT, nullable=nullable),
|
||||
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR, max_length=100, nullable=nullable),
|
||||
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL, nullable=nullable),
|
||||
cf.gen_float_vec_field(name=df.float_vec_field, dim=dim),
|
||||
cf.gen_float16_vec_field(name=df.fp16_vec_field, dim=dim),
|
||||
cf.gen_bfloat16_vec_field(name=df.bf16_vec_field, dim=dim),
|
||||
cf.gen_sparse_vec_field(name=df.sparse_vec_field),
|
||||
]
|
||||
c_name = cf.gen_unique_str("bulk_insert")
|
||||
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
||||
self.collection_wrap.init_collection(c_name, schema=schema)
|
||||
with RemoteBulkWriter(
|
||||
schema=schema,
|
||||
remote_path="bulk_data",
|
||||
connect_param=RemoteBulkWriter.ConnectParam(
|
||||
bucket_name=self.bucket_name,
|
||||
endpoint=self.minio_endpoint,
|
||||
access_key="minioadmin",
|
||||
secret_key="minioadmin",
|
||||
),
|
||||
file_type=BulkFileType.CSV,
|
||||
) as remote_writer:
|
||||
json_value = [
|
||||
{"key": "value"},
|
||||
{"number": 1},
|
||||
{"name": fake.name()},
|
||||
{"address": fake.address()}
|
||||
]
|
||||
for i in range(entities):
|
||||
row = {
|
||||
df.pk_field: i,
|
||||
df.int_field: 1 if not (nullable and random.random() < 0.5) else None,
|
||||
df.float_field: 1.0 if not (nullable and random.random() < 0.5) else None,
|
||||
df.string_field: "string" if not (nullable and random.random() < 0.5) else None,
|
||||
df.json_field: json_value[i%len(json_value)] if not (nullable and random.random() < 0.5) else None,
|
||||
df.array_int_field: [1, 2] if not (nullable and random.random() < 0.5) else None,
|
||||
df.array_float_field: [1.0, 2.0] if not (nullable and random.random() < 0.5) else None,
|
||||
df.array_string_field: ["string1", "string2"] if not (nullable and random.random() < 0.5) else None,
|
||||
df.array_bool_field: [True, False] if not (nullable and random.random() < 0.5) else None,
|
||||
df.float_vec_field: cf.gen_vectors(1, dim)[0],
|
||||
df.fp16_vec_field: cf.gen_vectors(1, dim, vector_data_type=DataType.FLOAT16_VECTOR)[0],
|
||||
df.bf16_vec_field: cf.gen_vectors(1, dim, vector_data_type=DataType.BFLOAT16_VECTOR)[0],
|
||||
df.sparse_vec_field: cf.gen_sparse_vectors(1, dim, sparse_format=sparse_format)[0]
|
||||
}
|
||||
if auto_id:
|
||||
row.pop(df.pk_field)
|
||||
if enable_dynamic_field:
|
||||
row["name"] = fake.name()
|
||||
row["address"] = fake.address()
|
||||
remote_writer.append_row(row)
|
||||
remote_writer.commit()
|
||||
files = remote_writer.batch_files
|
||||
# import data
|
||||
for f in files:
|
||||
t0 = time.time()
|
||||
task_id, _ = self.utility_wrap.do_bulk_insert(
|
||||
collection_name=c_name, files=f
|
||||
)
|
||||
logging.info(f"bulk insert task ids:{task_id}")
|
||||
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
|
||||
task_ids=[task_id], timeout=300
|
||||
)
|
||||
tt = time.time() - t0
|
||||
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
|
||||
assert success
|
||||
num_entities = self.collection_wrap.num_entities
|
||||
log.info(f" collection entities: {num_entities}")
|
||||
assert num_entities == entities
|
||||
# verify imported data is available for search
|
||||
index_params = ct.default_index
|
||||
float_vec_fields = [f.name for f in fields if "vec" in f.name and "float" in f.name]
|
||||
sparse_vec_fields = [f.name for f in fields if "vec" in f.name and "sparse" in f.name]
|
||||
for f in float_vec_fields:
|
||||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params=index_params
|
||||
)
|
||||
for f in sparse_vec_fields:
|
||||
self.collection_wrap.create_index(
|
||||
field_name=f, index_params=ct.default_sparse_inverted_index
|
||||
)
|
||||
# add json path index for json field
|
||||
json_path_index_params_double = {"index_type": "INVERTED", "params": {"json_cast_type": "double",
|
||||
"json_path": f"{df.json_field}['number']"}}
|
||||
self.collection_wrap.create_index(field_name=df.json_field, index_params=json_path_index_params_double)
|
||||
json_path_index_params_varchar = {"index_type": "INVERTED", "params": {"json_cast_type": "VARCHAR",
|
||||
"json_path": f"{df.json_field}['address']"}}
|
||||
self.collection_wrap.create_index(field_name=df.json_field, index_params=json_path_index_params_varchar)
|
||||
json_path_index_params_bool = {"index_type": "INVERTED", "params": {"json_cast_type": "Bool",
|
||||
"json_path": f"{df.json_field}['name']"}}
|
||||
self.collection_wrap.create_index(field_name=df.json_field, index_params=json_path_index_params_bool)
|
||||
json_path_index_params_not_exist = {"index_type": "INVERTED", "params": {"json_cast_type": "Double",
|
||||
"json_path": f"{df.json_field}['not_exist']"}}
|
||||
self.collection_wrap.create_index(field_name=df.json_field, index_params=json_path_index_params_not_exist)
|
||||
self.collection_wrap.load()
|
||||
log.info(f"wait for load finished and be ready for search")
|
||||
time.sleep(2)
|
||||
# log.info(f"query seg info: {self.utility_wrap.get_query_segment_info(c_name)[0]}")
|
||||
search_data = cf.gen_vectors(1, dim)
|
||||
search_params = ct.default_search_params
|
||||
res, _ = self.collection_wrap.search(
|
||||
search_data,
|
||||
df.float_vec_field,
|
||||
param=search_params,
|
||||
limit=1,
|
||||
output_fields=["*"],
|
||||
check_task=CheckTasks.check_search_results,
|
||||
check_items={"nq": 1, "limit": 1},
|
||||
)
|
||||
for hit in res:
|
||||
for r in hit:
|
||||
fields_from_search = r.fields.keys()
|
||||
for f in fields:
|
||||
assert f.name in fields_from_search
|
||||
if enable_dynamic_field:
|
||||
assert "name" in fields_from_search
|
||||
assert "address" in fields_from_search
|
||||
res, _ = self.collection_wrap.query(expr=f"{df.json_field}['number'] == 1", output_fields=[df.json_field])
|
||||
if not nullable:
|
||||
assert len(res) == int(entities/len(json_value))
|
||||
else:
|
||||
assert 0 < len(res) < int(entities/len(json_value))
|
||||
|
||||
|
||||
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
@pytest.mark.parametrize("auto_id", [True])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
@pytest.mark.parametrize("entities", [1000]) # 1000
|
||||
@ -2199,7 +2342,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
check_task=CheckTasks.err_res, check_items=error
|
||||
)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128])
|
||||
@pytest.mark.parametrize("entities", [2000])
|
||||
@ -2273,7 +2416,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
check_items={"nq": 1, "limit": 1},
|
||||
)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
@pytest.mark.parametrize("is_row_based", [True])
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("par_key_field", [df.int_field, df.string_field])
|
||||
@ -2384,7 +2527,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
check_items={"err_code": 2100, "err_msg": err_msg},
|
||||
)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [13])
|
||||
@pytest.mark.parametrize("entities", [150])
|
||||
@ -2470,7 +2613,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
||||
assert num_entities == entities * file_nums
|
||||
|
||||
@pytest.mark.parametrize("pk_field", [df.pk_field, df.string_field])
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
def test_bulk_import_random_pk_stats_task(self, pk_field):
|
||||
# connect -> prepare json data
|
||||
self._connect()
|
||||
@ -2551,6 +2694,7 @@ class TestImportWithTextEmbedding(TestcaseBase):
|
||||
"""
|
||||
|
||||
@pytest.mark.parametrize("file_format", ["json", "parquet", "numpy"])
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
def test_import_without_embedding(self, tei_endpoint, minio_host, file_format):
|
||||
"""
|
||||
target: test import data without embedding
|
||||
|
||||
@ -65,19 +65,6 @@ if [ "${DISABLE_PIP_INSTALL:-}" = "false" ]; then
|
||||
install_pytest_requirements
|
||||
fi
|
||||
|
||||
cd ${ROOT}/tests/python_client
|
||||
# Run bulk insert test
|
||||
# if MILVUS_HELM_RELEASE_NAME contains "msop", then it is one pod mode, skip the bulk insert test
|
||||
if [[ "${MILVUS_HELM_RELEASE_NAME}" != *"msop"* ]]; then
|
||||
if [[ -n "${TEST_TIMEOUT:-}" ]]; then
|
||||
|
||||
timeout "${TEST_TIMEOUT}" pytest testcases/test_bulk_insert.py --timeout=300 -v -x -n 6 --host ${MILVUS_SERVICE_NAME} --port ${MILVUS_SERVICE_PORT} --minio_host ${MINIO_SERVICE_NAME} \
|
||||
--html=${CI_LOG_PATH}/report_bulk_insert.html --self-contained-html
|
||||
else
|
||||
pytest testcases/test_bulk_insert.py --timeout=300 -v -x -n 6 --host ${MILVUS_SERVICE_NAME} --port ${MILVUS_SERVICE_PORT} --minio_host ${MINIO_SERVICE_NAME} \
|
||||
--html=${CI_LOG_PATH}/report_bulk_insert.html --self-contained-html
|
||||
fi
|
||||
fi
|
||||
|
||||
# Run restful test v1
|
||||
|
||||
@ -114,19 +101,10 @@ cd ${ROOT}/tests/python_client
|
||||
# Pytest is not able to have both --timeout & --workers, so do not add --timeout or --workers in the shell script
|
||||
if [[ -n "${TEST_TIMEOUT:-}" ]]; then
|
||||
|
||||
timeout "${TEST_TIMEOUT}" pytest --host ${MILVUS_SERVICE_NAME} --port ${MILVUS_SERVICE_PORT} \
|
||||
timeout "${TEST_TIMEOUT}" pytest --host ${MILVUS_SERVICE_NAME} --port ${MILVUS_SERVICE_PORT} --minio_host ${MINIO_SERVICE_NAME}\
|
||||
--html=${CI_LOG_PATH}/report.html --self-contained-html --dist loadgroup ${@:-}
|
||||
else
|
||||
pytest --host ${MILVUS_SERVICE_NAME} --port ${MILVUS_SERVICE_PORT} \
|
||||
pytest --host ${MILVUS_SERVICE_NAME} --port ${MILVUS_SERVICE_PORT} --minio_host ${MINIO_SERVICE_NAME}\
|
||||
--html=${CI_LOG_PATH}/report.html --self-contained-html --dist loadgroup ${@:-}
|
||||
fi
|
||||
|
||||
# # Run concurrent test with 5 processes
|
||||
# if [[ -n "${TEST_TIMEOUT:-}" ]]; then
|
||||
|
||||
# timeout "${TEST_TIMEOUT}" pytest testcases/test_concurrent.py --host ${MILVUS_SERVICE_NAME} --port ${MILVUS_SERVICE_PORT} --count 5 -n 5 \
|
||||
# --html=${CI_LOG_PATH}/report_concurrent.html --self-contained-html
|
||||
# else
|
||||
# pytest testcases/test_concurrent.py --host ${MILVUS_SERVICE_NAME} --port ${MILVUS_SERVICE_PORT} --count 5 -n 5 \
|
||||
# --html=${CI_LOG_PATH}/report_concurrent.html --self-contained-html
|
||||
# fi
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user