diff --git a/tests/python_client/testcases/test_insert.py b/tests/python_client/testcases/test_insert.py index d7eb328130..422850c09b 100644 --- a/tests/python_client/testcases/test_insert.py +++ b/tests/python_client/testcases/test_insert.py @@ -1054,9 +1054,9 @@ class TestInsertInvalid(TestcaseBase): collection_w = self.init_collection_wrap(name=collection_name) field_one = cf.gen_int64_field(is_primary=True) field_two = cf.gen_int64_field() - vec_field = ct.get_invalid_vectors + vec_field = ct.get_invalid_vectors df = cf.gen_collection_schema(fields=[field_one, field_two, vec_field]) - error={ct.err_code: 1, 'err_msg': "is illegal"} + error = {ct.err_code: 0, ct.err_msg: "The field of schema type must be FieldSchema."} mutation_res, _ = collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) class TestInsertInvalidBinary(TestcaseBase): @@ -1075,12 +1075,12 @@ class TestInsertInvalidBinary(TestcaseBase): """ collection_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=collection_name) - field_one = cf.gen_float_field(is_primary=True, auto_id=False) + field_one = cf.gen_float_field(is_primary=True) field_two = cf.gen_float_field() - vec_field = cf.gen_float_vec_field() + vec_field = cf.gen_float_vec_field() df = cf.gen_default_binary_collection_schema(fields=[field_one, field_two, vec_field]) - error = {ct.err_code: 0, ct.err_msg: "is error."} - mutation_res, _ =collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) + error = {ct.err_code: 0, ct.err_msg: "Data type is not support."} + mutation_res, _ = collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) def test_insert_with_invalid_binary_partition_name(self): @@ -1093,39 +1093,8 @@ class TestInsertInvalidBinary(TestcaseBase): collection_w = self.init_collection_wrap(name=collection_name) partition_name = ct.get_invalid_strs df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb) - error={ct.err_code: 1, 'err_msg': "The types of schema and data do not match."} + error = {ct.err_code: 1, 'err_msg': "The types of schema and data do not match."} mutation_res, _ = collection_w.insert(data=df, partition_name=partition_name, check_task=CheckTasks.err_res, check_items=error) - @pytest.mark.tags(CaseLabel.L2) - def test_insert_with_invalid_binary_field_type(self): - """ - target: test insert with invalid field - method: insert with invalid field type - expected: raise exception - """ - collection_name = cf.gen_unique_str(prefix) - collection_w = self.init_collection_wrap(name=collection_name) - vec_field, _ = self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=DataType.NONE, is_primary=True) - field_one = cf.gen_int64_field(is_primary=True) - field_two = cf.gen_int64_field() - df = [field_one, field_two, vec_field] - error={ct.err_code: 1, 'err_msg': "Data type is not support."} - mutation_res, _ = collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error) - - @pytest.mark.tags(CaseLabel.L2) - def test_insert_with_invalid_binary_field_value(self): - """ - target: test insert with invalid field - method: insert with invalid field value - expected: raise exception - """ - collection_name = cf.gen_unique_str(prefix) - collection_w = self.init_collection_wrap(name=collection_name) - field_one = cf.gen_int64_field(is_primary=True) - field_two = cf.gen_int64_field() - vec_field = ct.get_invalid_vectors - df = [field_one, field_two, vec_field] - error={ct.err_code: 1, 'err_msg': "Data type is not support."} - mutation_res, _ = collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)