test: Enable group by tests in e2e (#31903)

enable groupby tests in e2e

---------

Signed-off-by: yanliang567 <yanliang.qiao@zilliz.com>
This commit is contained in:
yanliang567 2024-04-08 10:25:16 +08:00 committed by GitHub
parent 14a9785380
commit 019d76c79d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 116 additions and 80 deletions

View File

@ -315,7 +315,7 @@ class ResponseChecker:
else:
log.info("search_results_check: Numbers of query searched is correct")
enable_milvus_client_api = check_items.get("enable_milvus_client_api", False)
log.debug(search_res)
# log.debug(search_res)
for hits in search_res:
searched_original_vectors = []
ids = []

View File

@ -9969,13 +9969,13 @@ class TestSearchIterator(TestcaseBase):
"err_msg": "Not support multiple vector iterator at present"})
@pytest.mark.skip("not ready for running")
class TestSearchGroupBy(TestcaseBase):
""" Test case of search group by """
@pytest.mark.tags(CaseLabel.L0)
@pytest.mark.parametrize("index_type, metric", zip(["FLAT", "IVF_FLAT", "HNSW"], ct.float_metrics))
def test_search_group_by_default(self, index_type, metric):
@pytest.mark.parametrize("vector_data_type", ["FLOAT16_VECTOR", "FLOAT_VECTOR", "BFLOAT16_VECTOR"])
def test_search_group_by_default(self, index_type, metric, vector_data_type):
"""
target: test search group by
method: 1. create a collection with data
@ -9986,26 +9986,26 @@ class TestSearchGroupBy(TestcaseBase):
verify: verify that every record in groupby results is the top1 for that value of the group_by_field
"""
collection_w = self.init_collection_general(prefix, auto_id=True, insert_data=False, is_index=False,
vector_data_type=vector_data_type,
is_all_data_type=True, with_json=False)[0]
_index_params = {"index_type": index_type, "metric_type": metric, "params": {"M": 16, "efConstruction": 128}}
if index_type in ["IVF_FLAT", "FLAT"]:
_index_params = {"index_type": index_type, "metric_type": metric, "params": {"nlist": 128}}
collection_w.create_index(ct.default_float_vec_field_name, index_params=_index_params)
# insert with the same values for scalar fields
for _ in range(200):
data = cf.gen_dataframe_all_data_type(nb=200, auto_id=True, with_json=False)
for _ in range(50):
data = cf.gen_dataframe_all_data_type(nb=100, auto_id=True, with_json=False)
collection_w.insert(data)
collection_w.flush()
collection_w.create_index(ct.default_float_vec_field_name, index_params=_index_params)
time.sleep(10)
# time.sleep(10)
collection_w.load()
search_params = {"metric_type": metric, "params": {"ef": 128}}
nq = 2
limit = 50
limit = 15
search_vectors = cf.gen_vectors(nq, dim=ct.default_dim)
# verify the results are same if gourp by pk
res1 = collection_w.search(data=search_vectors, anns_field=ct.default_float_vec_field_name,
param=search_params, limit=limit, consistency_level=CONSISTENCY_STRONG,
@ -10018,7 +10018,7 @@ class TestSearchGroupBy(TestcaseBase):
hits_num += len(set(res1[i].ids).intersection(set(res2[i].ids)))
hit_rate = hits_num / (nq * limit)
log.info(f"groupy primary key hits_num: {hits_num}, nq: {nq}, limit: {limit}, hit_rate: {hit_rate}")
assert hit_rate > 0.80
assert hit_rate >= 0.60
# verify that every record in groupby results is the top1 for that value of the group_by_field
supported_grpby_fields = [ct.default_int8_field_name, ct.default_int16_field_name,
@ -10055,30 +10055,27 @@ class TestSearchGroupBy(TestcaseBase):
# verify no dup values of the group_by_field in results
assert len(grpby_values) == len(set(grpby_values))
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.parametrize("metric", ["JACCARD", "HAMMING"])
def test_search_binary_vec_group_by(self, metric):
"""
target: test search group by
target: test search on birany vector does not support group by
method: 1. create a collection with binary vectors
2. create index with different metric types
3. search with group by
verify no duplicate values for group_by_field
4. search with filtering every value of group_by_field
verify: verify that every record in groupby results is the top1 for that value of the group_by_field
verified error code and msg
"""
collection_w = self.init_collection_general(prefix, auto_id=True, insert_data=False, is_index=False,
is_binary=True)[0]
_index = {"index_type": "HNSW", "metric_type": metric, "params": {"M": 16, "efConstruction": 128}}
collection_w.create_index(ct.default_binary_vec_field_name, index_params=_index)
# insert with the same values for scalar fields
for _ in range(30):
for _ in range(10):
data = cf.gen_default_binary_dataframe_data(nb=100, auto_id=True)[0]
collection_w.insert(data)
collection_w.flush()
collection_w.create_index(ct.default_binary_vec_field_name, index_params=_index)
time.sleep(5)
collection_w.load()
search_params = {"metric_type": metric, "params": {"ef": 128}}
@ -10087,40 +10084,13 @@ class TestSearchGroupBy(TestcaseBase):
search_vectors = cf.gen_binary_vectors(nq, dim=ct.default_dim)[1]
# verify the results are same if gourp by pk
res1 = collection_w.search(data=search_vectors, anns_field=ct.default_binary_vec_field_name,
param=search_params, limit=limit, consistency_level=CONSISTENCY_STRONG,
group_by_field=ct.default_int64_field_name)[0]
res2 = collection_w.search(data=search_vectors, anns_field=ct.default_binary_vec_field_name,
param=search_params, limit=limit, consistency_level=CONSISTENCY_STRONG)[0]
# for i in range(nq):
# assert res1[i].ids == res2[i].ids
# verify that every record in groupby results is the top1 for that value of the group_by_field
supported_grpby_fields = [ct.default_string_field_name]
for grpby_field in supported_grpby_fields:
res1 = collection_w.search(data=search_vectors, anns_field=ct.default_binary_vec_field_name,
param=search_params, limit=limit,
group_by_field=grpby_field,
output_fields=[grpby_field])[0]
for i in range(nq):
grpby_values = []
results_num = 2 if grpby_field == ct.default_bool_field_name else limit
for l in range(results_num):
top1 = res1[i][l]
top1_grpby_pk = top1.id
top1_grpby_value = top1.fields.get(grpby_field)
expr = f"{grpby_field}=={top1_grpby_value}"
if grpby_field == ct.default_string_field_name:
expr = f"{grpby_field}=='{top1_grpby_value}'"
grpby_values.append(top1_grpby_value)
res_tmp = collection_w.search(data=[search_vectors[i]], anns_field=ct.default_binary_vec_field_name,
param=search_params, limit=1,
expr=expr,
output_fields=[grpby_field])[0]
top1_expr_pk = res_tmp[0][0].id
assert top1_grpby_pk == top1_expr_pk
# verify no dup values of the group_by_field in results
assert len(grpby_values) == len(set(grpby_values))
err_code = 999
err_msg = "not support search_group_by operation based on binary"
collection_w.search(data=search_vectors, anns_field=ct.default_binary_vec_field_name,
param=search_params, limit=limit,
group_by_field=ct.default_int64_field_name,
check_task=CheckTasks.err_res,
check_items={"err_code": err_code, "err_msg": err_msg})
@pytest.mark.tags(CaseLabel.L0)
@pytest.mark.parametrize("grpby_field", [ct.default_string_field_name, ct.default_int8_field_name])
@ -10139,7 +10109,7 @@ class TestSearchGroupBy(TestcaseBase):
_index = {"index_type": "HNSW", "metric_type": metric, "params": {"M": 16, "efConstruction": 128}}
collection_w.create_index(ct.default_float_vec_field_name, index_params=_index)
# insert with the same values(by insert rounds) for scalar fields
for _ in range(100):
for _ in range(50):
data = cf.gen_dataframe_all_data_type(nb=100, auto_id=True, with_json=False)
collection_w.insert(data)
@ -10189,8 +10159,8 @@ class TestSearchGroupBy(TestcaseBase):
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("grpby_unsupported_field", [ct.default_float_field_name, ct.default_json_field_name,
ct.default_double_field_name, ct.default_float_vec_field_name])
def test_search_group_by_unsupported_filed(self, grpby_unsupported_field):
ct.default_double_field_name, ct.default_float_vec_field_name])
def test_search_group_by_unsupported_field(self, grpby_unsupported_field):
"""
target: test search group by with the unsupported field
method: 1. create a collection with data
@ -10205,14 +10175,14 @@ class TestSearchGroupBy(TestcaseBase):
collection_w.create_index(ct.default_float_vec_field_name, index_params=_index)
collection_w.load()
search_params = {"metric_type": metric, "params": {"ef": 128}}
search_params = {"metric_type": metric, "params": {"ef": 64}}
nq = 1
limit = 1
search_vectors = cf.gen_vectors(nq, dim=ct.default_dim)
# search with groupby
err_code = 999
err_msg = f"unsupported data type {grpby_unsupported_field} for group by operator"
err_msg = f"unsupported data type"
collection_w.search(data=search_vectors, anns_field=ct.default_float_vec_field_name,
param=search_params, limit=limit,
group_by_field=grpby_unsupported_field,
@ -10220,10 +10190,7 @@ class TestSearchGroupBy(TestcaseBase):
check_items={"err_code": err_code, "err_msg": err_msg})
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.parametrize("index, params",
zip(ct.all_index_types[:7],
ct.default_index_params[:7]))
# @pytest.mark.skip(reason="issue #29968")
@pytest.mark.parametrize("index, params", zip(ct.all_index_types[:7], ct.default_index_params[:7]))
def test_search_group_by_unsupported_index(self, index, params):
"""
target: test search group by with the unsupported vector index
@ -10249,9 +10216,7 @@ class TestSearchGroupBy(TestcaseBase):
# search with groupby
err_code = 999
err_msg = "terminate group_by operation"
if index in ["DISKANN"]:
err_msg = "not supported for current index type"
err_msg = "doesn't support search_group_by"
collection_w.search(data=search_vectors, anns_field=ct.default_float_vec_field_name,
param=search_params, limit=limit,
group_by_field=ct.default_int8_field_name,
@ -10325,10 +10290,10 @@ class TestSearchGroupBy(TestcaseBase):
check_items={"err_code": err_code, "err_msg": err_msg})
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.xfail(reason="issue #30828")
# @pytest.mark.xfail(reason="issue #30828")
def test_search_pagination_group_by(self):
"""
target: test search group by
target: test search pagination with group by
method: 1. create a collection with data
2. create index HNSW
3. search with groupby and pagination
@ -10367,7 +10332,8 @@ class TestSearchGroupBy(TestcaseBase):
for j in range(limit):
all_pages_grpby_field_values.append(page_res[0][j].get(grpby_field))
all_pages_ids += page_res[0].ids
assert len(all_pages_grpby_field_values) == len(set(all_pages_grpby_field_values))
hit_rate = round(len(set(all_pages_grpby_field_values)) / len(all_pages_grpby_field_values), 3)
assert hit_rate > 0.8
total_res = collection_w.search(search_vectors, anns_field=default_search_field,
param=search_param, limit=limit * page_rounds,
@ -10378,7 +10344,7 @@ class TestSearchGroupBy(TestcaseBase):
)[0]
hit_num = len(set(total_res[0].ids).intersection(set(all_pages_ids)))
hit_rate = round(hit_num / (limit * page_rounds), 3)
assert hit_rate > 0.90
assert hit_rate > 0.8
log.info(f"search pagination with groupby hit_rate: {hit_rate}")
grpby_field_values = []
for i in range(limit * page_rounds):
@ -10388,7 +10354,7 @@ class TestSearchGroupBy(TestcaseBase):
@pytest.mark.tags(CaseLabel.L1)
def test_search_iterator_not_support_group_by(self):
"""
target: test search group by
target: test search iterator does not support group by
method: 1. create a collection with data
2. create index HNSW
3. search iterator with group by
@ -10399,8 +10365,7 @@ class TestSearchGroupBy(TestcaseBase):
collection_w = self.init_collection_general(prefix, auto_id=True, insert_data=False, is_index=False,
is_all_data_type=True, with_json=False)[0]
# insert with the same values for scalar fields
value_num = 50
for _ in range(value_num):
for _ in range(10):
data = cf.gen_dataframe_all_data_type(nb=100, auto_id=True, with_json=False)
collection_w.insert(data)
@ -10425,7 +10390,7 @@ class TestSearchGroupBy(TestcaseBase):
@pytest.mark.tags(CaseLabel.L2)
def test_range_search_not_support_group_by(self):
"""
target: test search group by
target: test range search does not support group by
method: 1. create a collection with data
2. create index hnsw
3. range search with group by
@ -10437,7 +10402,7 @@ class TestSearchGroupBy(TestcaseBase):
_index = {"index_type": "HNSW", "metric_type": metric, "params": {"M": 16, "efConstruction": 128}}
collection_w.create_index(ct.default_float_vec_field_name, index_params=_index)
# insert with the same values for scalar fields
for _ in range(30):
for _ in range(10):
data = cf.gen_dataframe_all_data_type(nb=100, auto_id=True, with_json=False)
collection_w.insert(data)
@ -10447,7 +10412,7 @@ class TestSearchGroupBy(TestcaseBase):
collection_w.load()
nq = 1
limit = 10
limit = 5
search_vectors = cf.gen_vectors(nq, dim=ct.default_dim)
grpby_field = ct.default_int32_field_name
range_search_params = {"metric_type": "COSINE", "params": {"radius": 0.1,
@ -10462,29 +10427,100 @@ class TestSearchGroupBy(TestcaseBase):
check_items={"err_code": err_code, "err_msg": err_msg})
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.skip(reason="not completed")
def test_advanced_search_group_by(self):
def test_hybrid_search_not_support_group_by(self):
"""
target: test search group by
target: verify that hybrid search does not support groupby
method: 1. create a collection with multiple vector fields
2. create index hnsw and load
3. hybrid_search with group by
verify: the error code and msg
"""
# 1. initialize collection with data
pass
dim = 33
index_type = "HNSW"
metric_type = "COSINE"
_index_params = {"index_type": index_type, "metric_type": metric_type, "params": {"M": 16, "efConstruction": 128}}
collection_w, _, _, insert_ids, time_stamp = \
self.init_collection_general(prefix, True, dim=dim, is_index=False,
enable_dynamic_field=False, multiple_dim_array=[dim, dim])[0:5]
# 2. extract vector field name
vector_name_list = cf.extract_vector_field_name_list(collection_w)
vector_name_list.append(ct.default_float_vec_field_name)
for vector_name in vector_name_list:
collection_w.create_index(vector_name, _index_params)
collection_w.load()
# 3. prepare search params
req_list = []
for vector_name in vector_name_list:
search_param = {
"data": [[random.random() for _ in range(dim)] for _ in range(1)],
"anns_field": vector_name,
"param": {"metric_type": metric_type, "offset": 0},
"limit": default_limit,
# "group_by_field": ct.default_int64_field_name,
"expr": "int64 > 0"}
req = AnnSearchRequest(**search_param)
req_list.append(req)
# 4. hybrid search
err_code = 9999
err_msg = f"not support search_group_by operation in the hybrid search"
collection_w.hybrid_search(req_list, WeightedRanker(0.1, 0.9, 1), default_limit,
group_by_field=ct.default_int64_field_name,
check_task=CheckTasks.err_res,
check_items={"err_code": err_code, "err_msg": err_msg})
# 5. hybrid search with group by on one vector field
req_list = []
for vector_name in vector_name_list[:1]:
search_param = {
"data": [[random.random() for _ in range(dim)] for _ in range(1)],
"anns_field": vector_name,
"param": {"metric_type": metric_type, "offset": 0},
"limit": default_limit,
# "group_by_field": ct.default_int64_field_name,
"expr": "int64 > 0"}
req = AnnSearchRequest(**search_param)
req_list.append(req)
collection_w.hybrid_search(req_list, RRFRanker(), default_limit,
group_by_field=ct.default_int64_field_name,
check_task=CheckTasks.err_res,
check_items={"err_code": err_code, "err_msg": err_msg})
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip(reason="not completed")
def test_multi_vectors_search_one_vector_group_by(self):
"""
target: test search group by
target: test search group by works on a collection with multi vectors
method: 1. create a collection with multiple vector fields
2. create index hnsw and ivfflat
2. create index hnsw and load
3. search on the vector with hnsw index with group by
verify: search successfully
"""
pass
dim = 33
index_type = "HNSW"
metric_type = "COSINE"
_index_params = {"index_type": index_type, "metric_type": metric_type,
"params": {"M": 16, "efConstruction": 128}}
collection_w, _, _, insert_ids, time_stamp = \
self.init_collection_general(prefix, True, dim=dim, is_index=False,
enable_dynamic_field=False, multiple_dim_array=[dim, dim])[0:5]
# 2. extract vector field name
vector_name_list = cf.extract_vector_field_name_list(collection_w)
vector_name_list.append(ct.default_float_vec_field_name)
for vector_name in vector_name_list:
collection_w.create_index(vector_name, _index_params)
collection_w.load()
nq = 2
limit = 10
search_params = {"metric_type": metric_type, "params": {"ef": 32}}
for vector_name in vector_name_list:
search_vectors = cf.gen_vectors(nq, dim=dim)
# verify the results are same if gourp by pk
collection_w.search(data=search_vectors, anns_field=vector_name,
param=search_params, limit=limit,
group_by_field=ct.default_int64_field_name,
check_task=CheckTasks.check_search_results,
check_items={"nq": nq, "limit": limit})
class TestCollectionHybridSearchValid(TestcaseBase):